Pesquisar na comunidade
Resultados para as tags 'aminoácidos'.
Encontrado(s) 8 registros
-
-
- aminoácidos
- insane labz
-
(e 1 mais)
Tags:
-
-
-
-
As proteínas do soro do leite mais conhecidas como whey protein são extraídas a partir do processo de fabricação de queijos as quais só começaram a ser estudadas na década 70. No processo da produção de queijo ocorre a separação do coalho do soro do leite, onde, esse soro é processado e purificado até que permaneça apenas o concentrado protéico. O whey protein possui alto valor nutricional contendo a maior concentração disponível de aminoácidos essenciais de cadeia ramificada o que incluiu a leucina, isoleucina e valina (BCAAs) os quais nosso organismo não é capaz de produzir. Estes aminoácidos favorecem o anabolismo, bem como a redução do catabolismo protéico, favorecendo o ganho de força muscular e reduzindo a perda da massa muscular, além disso, apresentam alto teor de cálcio e peptídeos bioativos do soro do leite que atuam como agentes antimicrobianos, anti-hipertensivos, reguladores da função imune, assim como os fatores de crescimento. Os primeiros estudos com o whey protein resultou em diversos benefícios tais como: responde um papel importante no tratamento de prisão de ventre e putrefação intestinal. Os mecanismos da ação da proteína do soro do leite na hipertrofia muscular, redução de gordura corporal, melhoram o desempenho físico de atletas ativos e até mesmo pessoas portadoras de doenças. O Whey Protein é considerado altamente digerível e rapidamente absorvido pelo organismo, estimulando a síntese de proteínas sanguíneas e teciduais a tal ponto, que alguns pesquisadores classificaram essas proteínas como proteínas de metabolização rápida, muito adequadas para situações de estresses metabólicos em que a reposição de proteínas no organismo se torna emergencial. Já foi comprovado que a manutenção ou o ganho da massa muscular contribui para uma melhor qualidade de vida principalmente em idosos que com o passar dos anos ocorre uma diminuição da massa muscular esquelética. Os exercícios físicos são de extrema importância para impedir a atrofia muscular e favorecendo o processo de hipertrofia, melhorando a qualidade de vida geral dos indivíduos praticantes. A nutrição como sempre exerce um papel fundamental nesse processo, pois, pessoas ativas e principalmente os atletas precisam de uma quantidade mais elevada de proteínas que as estabelecidas por pessoas sedentárias. Alguns estudos mostram que indivíduos que fazem treinos de resistência necessitam de 1,2g a 1,4g de proteína por kg de peso/dia enquanto que os atletas de força necessitam de 1,6 a 1,7g por kg - de peso/dia, superior aos indivíduos sedentários que necessitam de 0,8 a 1,0g por kg/ dia. A ingestão de proteínas ou aminoácidos após exercícios físicos favorece a recuperação da síntese protéica muscular, sendo assim, quanto menor o intervalo do término do exercício e a ingestão do whey melhor será a resposta anabólica do exercício. Um estudo feito com 13 idosos submetidos a treino resistidos de peso concluiu que o grupo que recebeu a suplementação de whey logo após os exercícios apresentou um ganho maior de massa muscular comparado a um grupo que recebeu a suplementação duas horas após exercícios físicos. Os benefícios do whey protein sobre o ganho de massa muscular estão relacionados ao perfil de aminoácidos, principalmente a leucina que é um excelente desencadeador da síntese protéica. Rápida absorção intestinal dos aminoácidos e peptídeos e a ação em relação a liberação de hormônios anabólicos como a insulina. Exercício físico e o treinamento de resistência podem reduzir os níveis de glutamina. Dentre diversos benefícios do whey protein podem destacar que ele ajuda os atletas a manterem um sistema imunológico saudavel, além de aumentar os níveis de glutamina que é necessário para um sistema imunológico saudável. O whey protein possui componentes bioativos que estimulam a liberação dos hormônios: a colecistoquinina (CCK) e peptídeio similar ao Glucagon (GLP-1) responsáveis pela saciedade. A ingestão do whey protein no intervalo das refeições (lanches), fornece energia saudável e pode ajudar a controlar a ingestão de alimentos da refeição seguinte, que resulta em benefício à manutenção do peso. Além do controle de peso, o whey protein tem sido utilizado por pacientes com câncer que são submetidos à radioterapia ou quimioterapia o que em muitas vezes apresentam um quadro nutricional grave, levando à perda de peso, perda de massa muscular e desnutrição protéico-calórica. Whey protein é uma excelente proposta para paciente com câncer, pois seu sabor é suave e de fácil digestão. Uma boa alimentação e ingestão adequada de proteínas de soro do leite podem ajudar a manter os músculos fortes durante o envelhecimento, especialmente se combinada com um programa de exercício e treino de resistência. O suplemento de whey protein após processo cirúrgico ajuda a cicatrização, fornecendo mais proteínas de alto valor biológico ao organismo acelerando a reconstrução da pele. A proteína do soro do leite também contribui na regulação dos níveis de glicose no sangue o que vem sendo adotado como fonte de proteína e nutrientes pelos diabéticos evitando assim os alimentos com níveis de gordura e colesterol. Vale ressaltar que o Whey Protein nunca substitui uma refeição. Deve sempre ser consumido como um complemento. Referencias 1. Groziak SM, Miller GD. Natural bioactive substances in milk and colostrum: effects on the arterial blood pressure system. Brit J Nutr. 2000; 84(6):119-25. 2. Lönnerdal B. Nutritional and physiologic significance of human milk proteins. Am J Clin Nutr. 2003; 77(6):1537-43 3. Kinsella JE, Whitehead DM. Proteins in whey: chemical, physical and functional properties. Adv Foods Nutr Res. 1989; 33:343-438 4. De Wit JN. Nutritional and functional characteristics if whey proteins in foods products. J Dairy Sci. 1998; 81(3):597-608. 5. Aimutis WL. Bioactive properties of milk proteins with particular focus on anticariogenesis. J Nutr. 2004; 134(4):989s-95s. 6. Shannon LK, Chatterton D, Nielsen K, Lönnerdal B. Glycomacropeptide and alfa-lactoalbumin supplementation of infant formula affects growth and nutritional status in infant rhesus monkeys. Am J Clin Nutr. 2003; 77(5):1261-8. 7. Markus CR, Oliver B, DE Haan EHF. Whey Protein rich in alfa-lactoalbumin increases the ratio of plasma tryptophan to the sum of the other large neutral amino acids and improves cognitive performance in stress-vulnerable subjects. Am J Clin Nutr. 2002; 75(6):1051-6. 8. Ha E, Zemel MB. Functional properties of whey, whey components, and essential amino acids: mechanisms underlying health benefits for active people. J Nutr Biochem. 2003; 14(5):251-58. 9. Etzel MR. Manufacture and use of dairy protein fractions. J Nutr. 2004; 134(4):996s-1002s. 10. Phillips SM, Tipton KD, Ferrando AA, Wolfe RR. Resistance training reduces the acute exercise-induced increase in muscle protein turnover. Am J Physiol End Met. 1999; 276(1):E118-24. 11. Yarasheski KE, Pak-Loduca J, Hasten DL, Obert KA, Brown MB, Sinacore DR. Resistance exercise training increases mixed muscle protein synthesis rate in frail woman and men >76 yr old. Am J Physiol. 1999; 277(1):E118-25. 12. Hasten DL, Pak-Loduca J, Obert KA, Yarasheski KE. Resistance exercise acutely increases MHC and mixed muscle protein synthesis rates in 78-84 and 23-32 yrs old. Am J Physiol End Met. 2000; 278(4):E620-6. 13. Lemon PWR. Effects of exercise on dietary protein requirements. Int J Sports Nutr. 1998; 8(4): 426-47. 14. Ivy JL, Goforth Jr HW, Damon BM, McCauley TR, Parsons EC, Price TB. Early postexercise muscle glycogen recovery is enhanced with a carbohydrate-protein supplement. J Appl Physiol. 2002; 93(4):1337-44. 15. Børshein E, Aarsland A, Wolfe, RR. Effect of an amino acids, protein, and carbohydrate mixture in net muscle protein balance after resistance exercise. Int J Sports Nutr Exer Metab. 2004; 14(3):255-71. 16. Esmarck B, Andersen JL, Olsen S, Richter EA, Mizuno M, Kjaer M. Timing of postexercise protein intake is important for muscle hypertrophy with resistance training in elderly humans. J Physiol. 2001; 535(1):301-11 17. Wolfe RR. Protein supplements and exercise. Am J Clin Nutr. 2000; 72(2):551s-7s. 18. Kimball SC. Regulation of global and specific mRNA translation by amino acids. J Nutr. 2002; 132(5):883-6. 19. Anthony JC, Anthony TG, Kimball SR, Jefferson LS. Signaling pathways involved in translation control of protein synthesis in skeletal muscle by leucine. J Nutr. 2001; 131(3):856s-60s. 20. van Loon LJC, Saris WHM, Verhagen H, Wagenmakers JM. Plasma insulin responses after ingestion of different amino acid or protein mixtures with carbohydrate. Am J Clin Nutr. 2000; 72(1):96-105. 21. Burke DG, Chilibeck PD, Davison KS, Candow DG, Farthing J, Smith-Palmer T. The effect of whey protein supplementation with and without creatine monohydrate combined with resistance training on lean tissue mass and muscle strength. Int J Sports Nutr Exe Met. 2001; 11(3):349-64. 22. Dangin M, Boirie Y, Garcia-Rodenas C, Gachon P, Fauquant J, Callier P, et al. The digestion rate of protein is an independent regulating factor of postprandial protein retention. Am J Physiol End Met. 2001; 280(2):E340-E8. 23. Zawadzki KM, Yaspelkis BB III, Ivy JL. Carbohydrate-protein complex increased the rate of muscle glycogen storage after exercise. J Appl Physiol. 1992; 72(5):1854-9. 24. Calbet JAL, MacLean DA. Plasma glucagon and insulin responses depend on the rate of appearance of amino acids after ingestion of different protein solutions in humans. J Nutr. 2002; 132(b ):2174-82. 25. Werustsky CA. Inibição da degradação protéica muscular em atletas pela suplementação de aminoácidos. Nutrição Enteral e Esportiva. Rio de Janeiro; 1993. 6:4-7. 26. Popkin BM. The nutrition transition and its health implications in lower-income countries. Publ Health Nutr. 1998; 1(1):5-21. 27. Fontaine KR, Faith MS, Allison DB, Cheskin LJ. Body weight and health care among woman in the general population. Arch Farm Med. 1998; 7(4):381-4. 28. Zemel MA. Role of calcium and dairy products in energy partitioning and weight management. Am J Clin Nutr. 2004; 79(5):907s-12s. 29. Layman DK. The role of leucine in weight loss diets and glucose homeostasis. J Nutr. 2003; 133(1): 261-7. 30. Layman DK, Baum JI. Dietary protein impact on glycemic control during weight loss. J Nutr. 2004; 134(4):968s-73s. 31. Layman DK, Shiue H, Sather C, Erickson D, Baum J. Increased dietary protein modifies glucose and insulin homeostasis in adult woman during weight loss. J Nutr. 2003; 133(2):405-10. 32. Bouthegourd JCJ, Roseau SM, Makarios-Lahhan L, Leruyet PM, Tomé DG, Even PC. A preeexercise alfa-lactalbumin-enriched whey protein meal preserves lipid oxidation and decreases adiposity in rats. Am J Physiol End Met. 2002; 283(3): E565-E72. 33. Graaf C, Blom WAM, Smeets AM, Stafleu A, Hendriks FJ. Biomarkers of satiation and satiety. Am J Clin Nutr. 2004; 79(6):946-61. 34. Hall WL, Millward DJ, Long SJ, Morgan LM. Casein and whey exert different effects on plasma amino acids profiles, gastrointestinal hormone secretion and appetite. Brit J Nutr. 2003; 89(2):239-48. 35. Pedersen BK, Hoffman-Goetz L. Exercise and the immune system: regulation, integration and adaptation. Physiol Rev. 2000; 80(3):1055-81. 36. Lands LC, Grey VL, Smoutas AA. Effect of supplementation with cysteine donor on muscular performance. J Appl Physiol. 1999; 87(4):1381-5. 37. Toba Y, Takada, Y, Matsuoka Y, Morita Y, Motouri M, Iría T, et al. Milk basic protein promotes bone formation and suppresses bone resorption in health adult men. Biosci Biotechnol Biochem. 2001; 65(4):1353-57. 38. Fitzgerlad RJ, Murray BA, Walsh DJ. Hypotensive peptides from milk protein. J Nutr. 2004; 134(4):980s-8s. 39. Pins JJ, Keenan JM. The effects of a hydrolyzed whey protein supplement (Biozate® 1) on ACE activity and bradykinin. In: Proceeding of 64th Annual Scientific Sessions of the American Diabetes Association 2004; Orlando, Florida. 40. Kawase M, Hashimota H, Hosoda M, Morita H, Hosono A. Effects of administration of fermented milk containing whey protein concentrate to rats and healthy men on serum lipids and blood pressure. J Dairy Sci. 2000; 83(2):255-63. 41. Markus CR, Oliver, B, Panhuysen GEM, der Gusten JV, Alles MS, Tuiten A, et al. The bovine protein alfa-lactalbumin increases the plasma ratio of tryptophan to the other large neutral amino acids, and in vulnerable subjects raises brain serotonin activity, reduces cortisol concentration, and improves mood under stress. Am J Clin Nutr. 2000; 71(6):1536-44 42. Rossi L, Tirapegui J. Aspectos atuais sobre exercício físico, fadiga e nutrição. Rev Paul Educ Fis. 1999; 13(1):67-82. 43. Lönnerdal B. Dietary factors influencing zinc absorption. J Nutr. 2000; 130(5):1378s-83s. 44. Borges PFZ. Produção de concentrados de proteínas de leite bovino: composição e valor nutritivo. Braz J Food Tecnol. 2001; 4(1):1-8.
-
- whey
- whey protein
- (e 4 mais)
-
Vamos falar um pouquinho deste suplemento tão conturbado no meio da musculação, onde alguns crêem terem bons resultados e outros dizem que nada acontece com seu uso, vamos colocar umas particularidades, aí fica a sua decisão se vale a pena usar ou não. É um derivado do aminoácido Leucina (precursora do HMB). É um aminoácido essencial (não sintetizado pelo organismo) devendo ser consumido por meio de alimentos(lacteos, carnes, peixes, ovos). É um suplemento esportivo capaz de auxiliar no ganho de força, massa muscular e queima de gordura durante o treinamento de força. Porém, seu resultado é incerto, alguns propõem que ele atue ao recuperar membranas celulares lesionadas durante o exercício ou que regule enzimas importantes no processo de crescimento muscular. Estudos recentes têm avaliado os possíveis mecanismos intrínsecos pelos quais a suplementação de HMB poderia proporcionar ganhos na massa/força muscular e, consequentemente, a efetividade deste metabólito como um agente terapêutico na prevenção do catabolismo protéico, além de auxiliar na queima de gordura corporal (lipólise). Estudos colocam que o HMB é capaz de reduzir o catabolismo protéico e perda de peso durante períodos de consumo inadequado de alimentos (restrição calórica). Em estudo realizado por Wilson et al. (2008) destaca-se que um indivíduo precisaria consumir cerca de 60 g de L-leucina para obter 3 g de HMB, tendo em vista que para cada 100g de carne você terá disponível aproximadamente 1g de Leucina, e para cada 100g de leguminosos aproximadamente, será adquirida 3g de Leucina, isso ainda sem levar em conta a biodisponibilidade. Você teria que consumir muita carne ou muito leguminoso para atingir a quantidade que um individuo precisaria para evitar o catabolismo muscular, ou seja, como a literatura coloca o consumo diário em torno de 1,5 a 3g de HMB, Nissen et al. (1996) foram os primeiros a avaliar os efeitos da suplementação de HMB sobre parâmetros musculares em humanos. Os autores observaram que 7 semanas de suplementação com 1,5 e 3,0 g/HMB/dia, com concomitante treinamento físico de força, realizado 3 vezes por semana, promoveu redução significativa da degradação protéica muscular. Essa conclusão foi indicada pela redução na excreção urinária de 3-metil-histidina (3-MH) e também no dano muscular, avaliado através da redução plasmática de creatina quinase (CK). No mesmo estudo, os autores também puderam concluir que 7 semanas de suplementação de HMB na ordem de 3 g/dia, associado ao treinamento físico de força (6 vezes por semana) proporcionou aumento significativo da massa magra. Corroborando tais resultados positivos, Panton et al. (2000) avaliaram de modo randomizado e duplo-cego por 4 semanas 39 homens e 36 mulheres submetidos ao treinamento de força (3x/semana) e suplementados com 3 g/HMB/dia. Os indivíduos suplementados apresentaram ganho significativo de força nos membros superiores e de massa magra independente do gênero e/ou do nível de treinamento. Em indivíduos treinados, a suplementação de HMB apresenta resultados controversos aos observados em indivíduos sedentários. Por exemplo, Slater et al. (2001) conduziram um estudo randomizado e duplo-cego em atletas com alta experiência em treinamento de força e não observaram efeitos no ganho de força e de massa magra após 6 semanas de suplementação de HMB na ordem de 3 g/dia. Algumas explicações para os resultados conflitantes merecem destaque. Do ponto de vista do ganho de massa muscular, acredita-se que a suplementação de HMB exerça efeitos significativos em condições nas quais a proteólise muscular é mais acentuada, como no caso de indivíduos sedentários agudamente expostos à estimulação mecânica. Além disso, o tipo de estímulo mecânico também é um fator a ser considerado, visto que contrações excêntricas promovem tensão muscular superior na ordem de aproximadamente 30%, o que maximiza o dano muscular (SPIERING et al., 2008). Resumindo o HMB é um suplemento que ainda se tem dúvida sobre sua eficácia, mas tem se notado grande resultado em pacientes com perda de massa magra devido a alguma patologia. Portanto, fica a critério de cada um o seu uso, pois o que pode ser muito bom para uns, para outros pode não adiantar de nada. A indicação de suplementação é de cerca de 3g/dia ou 38mg/kg/dia. Sugere-se a divisão em 3 doses de 1g/dia, para fins de meia vida e absorção. Bons treinos e até a próxima.
- 1 comentário
-
Como agem os BCAA's A seguir, o que todo praticante de musculação deveria saber sobre esses três poderosos aminoácidos. Aminoácidos de cadeia ramificada (BCAA’s) devem estar entre os mais antigos suplementos do culturismo, mas sua eficácia no processo de construção muscular continua inabalada. Considere isso: os BCAA’s representam aproximadamente um terço do total de aminoácidos presentes na musculatura! Mais ainda, eles são essenciais para todas as reações de síntese de tecido muscular e têm sido usados até em atletas de alto nível em provas de resistência aeróbia. Os três aminoácidos de cadeia ramificada são: leucina, isoleucina e valina. Todos são essenciais, o que significa que você deve obter as quantidades adequadas pela dieta. Use ou Perca Devido a musculatura ser tão rica em BCAA’s, eles são requisitados pelo organismo durante momentos de estresse ou intenso exercício. Por exemplo, o treinamento intenso causa uma elevação do cortisol, acarretando a destruição de proteínas musculares, liberando aminoácidos (grande parte são BCAA’s). Além de ser queimado na musculatura em ação, os BCAA’s são uma fonte alternativa de energia para quase todos os tecidos do organismo. Esportes de alta intensidade como o culturismo gastam mais rápido as reservas de BCAA’s do que atividades aeróbias. Devido a isso, muitos atletas utilizam suplementos que contenham BCAA’s. Depois de tudo, faz sentido repor o que você usou. Protetor Muscular Vários estudos realizados com atletas sugerem que a suplementação de BCAA’s, antes ou imediatamente após o exercício, pode estimular a síntese proteíca e diminuir a quebra de tecido muscular. Isso parece ocorrer devido ao fato de a suplementação de BCAA’s suprir as necessidades dietéticas destes aminoácidos, preservando os estoques musculares. Ter as quantidades adequadas destes aminoácidos na musculatura após o treinamento é essencial para a síntese protéica e crescimento muscular.
-
- bcaa
- aminoácidos
- (e 5 mais)
-
A proteína é um nutriente vital para os seres vivos, pois consiste em uma macromolécula presente em todas as células de organismos vivos. Como os carboidratos e as gorduras, as proteínas contêm átomos de carbono, hidrogênio e oxigênio, diferindo-se pela presença, principalmente, de nitrogênio (16% da molécula), juntamente com enxofre, fósforo e ferro. As proteínas são formadas por combinações dos vinte aminoácidos em diversas proporções e cumprem funções estruturais, reguladoras, de defesa e de transporte nos fluídos biológicos. Os aminoácidos livres estão em equilíbrio dinâmico na célula e nos fluidos biológicos, o qual é dependente do anabolismo e do catabolismo orgânico, sendo esse processo denominado turnover proteico. Os principais tecidos responsáveis por esse equilíbrio são o muscular e visceral, sendo estas últimas responsáveis pela síntese de proteínas sanguíneas fundamentais na homeostase celular. As melhores fontes proteicas são de origem animal, no entanto, a ingestão de misturas de cereais e leguminosas nos fornecem também as quantidades de aminoácidos necessárias para a síntese proteica. As proteínas ocupam uma posição chave na reparação e na formação de tecido muscular depois do exercício. Ao levantar um peso, os músculos são forçados a se alongar quando prefeririam se contrair. Essa ação causa minúsculas rupturas nas fibras musculares, que são a razão da dor muscular sentida 1 ou 2 dias após o exercício intenso. Em resposta, o organismo faz as fibras musculares aumentarem de tamanho e as fortalece para protegê-las de rompimentos futuros. O material de construção para esse processo provém principalmente da proteína alimentar, desmembrada em aminoácidos durante a digestão. Como explicado anteriormente, os aminoácidos entram na corrente sanguínea e são transportados para as células musculares para serem sintetizados em proteínas. Há dois tipos principais de proteína muscular: actina e miosina. No desenvolvimento muscular, ocorre o aumento quantitativo de actina e miosina, e este processo faz com que as fibras musculares aumentem em diâmetro e força e se contraiam com mais vigor. A digestão das proteínas começa no estômago, com a enzima pepsina secretada no suco gástrico, seguida pela ação das enzimas proteolíticas provenientes do pâncreas e da mucosa do intestino delgado. Essas enzimas não são secretadas na forma ativa, mas como proenzimas ou zimogêneos; posteriormente, pela ação de outros compostos, são ativadas pela perda de uma hidrólise parcial. Assim, por exemplo, ácido clorídrico do estômago desnatura as proteínas e transforma o pepsinogênio em pepsina. Essa enzima começa a clivagem das proteínas dos alimentos, principalmente das ligações envolvendo os aminoácidos aromáticos e a leucina. As proenzimas pancreáticas são ativadas pela enteroquinase do suco intestinal, que transforma o tripsinogênio em tripsina por meio do processo de hidrólise, o qual é continuado por uma ativação em cascata das outras proenzimas pancreáticas pela ação da tripsina. A secreção de enzimas proteolíticas parece ser regulada pela presença de proteína da dieta no intestino delgado. Os eventos que ocorrem no intestino durante a digestão de proteínas estão bem estabelecidos. As enzimas do suco pancreático mostram uma grande especificidade, especialmente nas ligações adjacentes à lisina ou à arginina (tripsina) ou nos aminoácidos aromáticos (quimio-tripsina) e ainda nos aminoácidos alifáticos neutros (elastase). A maior parte da proteína que entra no intestino, quer de origem dietética, quer de origem endógena, é digerida e absorvida na forma de aminoácidos. Para uma ingestão diária média de proteína de 90 a 100g, a contribuição das secreções digestivas endógenas equivale aproximadamente a 60 a 70g, que no intestino são digeridas e absorvidas; proteínas plasmáticas (~2g) e 6 a 12g de proteína aparecem nas fezes. Outro fator importante na absorção das proteínas dos alimentos é a sua digestibilidade, que é definida como a relação entre proteína ou nitrogênio absorvido e proteína ou nitrogênio ingerido. Em geral, as proteínas de origem animal têm digestibilidade ao redor de 90 e 95%, como se verifica no leite, na carne e no ovo. As proteínas dos vegetais têm digestibilidade menor. Após a absorção intestinal, os aminoácidos são transportados diretamente ao fígado pelo sistema porta. Esse órgão exerce um papel importante como modulador da concentração de aminoácidos plasmáticos. Cerca de 20% dos aminoácidos que entram no fígado são liberados para a circulação sistêmica, cerca de 50% são transformados em uréia e 6% em proteínas plasmáticas. Os aminoácidos liberados na circulação sistêmica, especialmente os de cadeia ramificada (isoleucina, leucina e valina) são depois metabolizados pelo músculo esquelético, pelos rins e por outros tecidos. O destino dos aminoácidos em cada tecido varia de acordo com as necessidades de momento daquele tecido, havendo um equilíbrio dinâmico entre as proteínas tissulares, os aminoácidos ingeridos pela dieta e os aminoácidos circulantes. Há um contínuo processo dinâmico de síntese e catabolismo proteico, específico em cada tecido, denominado, como já vimos, turnover proteico. A vida média de uma proteína corresponde ao tempo que o organismo leva para renovar a metade da quantidade dela. Certas enzimas intracelulares têm vida média de algumas horas. A hemoglobina tem vida média de 120 dias e o colágeno, cerca de 365 dias. Como fonte de energia, as proteínas são equivalentes aos carboidratos, fornecendo 4kcal/g. No entanto elas são consideradas mais “caras” do que os carboidratos, pois demandam maior quantidade de energia para a sua metabolização. Sendo assim, uma condição fundamental para se garantir a adequada utilização pelo organismo da proteína ingerida é que seja satisfeita a necessidade energética, pois a deficiência de energia acarreta em desvio de proteínas a partir de suas funções plásticas e reparadoras em detrimento da produção de energia. Entre os 21 aminoácidos naturais, vários devem estar presentes na dieta para satisfazer as necessidades do organismo, enquanto outros não; em consequência, a qualidade nutricional das proteínas pode ser determinada pelo tipo e pela quantidade de seus aminoácidos constituintes. Alguns aminoácidos são classificados como essenciais porque sua síntese no organismo é inadequada para satisfazer as necessidades metabólicas e devem ser fornecidos como parte da dieta. Esses aminoácidos são: treonina, triptofano, histidina, lisina, leucina, isoleucina, metionina, valina, fenilanina e possivelmente arginina. Ausência ou inadequada ingestão de alguns desses aminoácidos resulta em balanço nitrogenado negativo, perda de peso, crescimento menor em crianças e pré-escolares e sintomatologia clínica. Os aminoácidos não essenciais – alanina, ácido aspártico, asparagina, ácido glutâmico, glicina, prolina e serina – são igualmente importantes na estrutura proteica; no entanto, se houver deficiência na ingestão de um deles, ele pode ser sintetizado em nível celular a partir de aminoácidos essenciais ou de precursores contendo carbono e nitrogênio. Pode parecer que quanto mais material de construção (proteína) o organismo recebe, mais músculo ele desenvolve. Pelo menos é esta a linha de pensamento seguida pelos atletas de força há anos. No entanto, não é bem assim que funciona. Comer o dobro de proteína não dobrará o volume dos músculos. Além disso, outro problema de quem come proteína demais é que o excesso pode ser armazenado no organismo em forma de gordura. Para criar massa muscular é preciso manter um balanço nitrogenado positivo. Mas isso não significa necessariamente que se deve ingerir mais proteína. As células musculares assimilam a quantidade exata de nutrientes de que necessitam para o crescimento, e o treinamento de força contribui para que elas aproveitem melhor as proteínas disponíveis. O exercício de força representa um potente estímulo para a ocorrência de hipertrofia na fibra muscular em humanos. O processo de hipertrofia ocorre quando a taxa de síntese proteica muscular excede a taxa de degradação, acarretando em saldo positivo do balanço proteico muscular. O aumento desse saldo ocorre após uma única sessão de exercício de força, sendo geralmente aceito que o crescimento muscular ocorre após semanas ou meses de treinamento como consequência das elevações crônicas e transitórias na síntese proteica, que supera a degradação proteica durante o período de recuperação entre as sessões consecutivas de treinamento. A síntese proteica muscular pode permanecer elevada por até 48 horas pós- exercício. Visando maximizar o ganho de massa muscular, é necessário otimizar os fatores que promovem a síntese proteica e diminuem a degradação proteica. Não obstante, uma miríade de potenciais fatores pode influenciar no metabolismo proteico muscular, incluindo tipo, intensidade, frequência e duração do exercício, fatores hormonais e a extensão do período de recuperação. Além disso, fatores nutricionais podem influenciar no metabolismo proteico, sendo que tais intervenções nutricionais são comumente difundidas entre atletas e praticantes recreacionais de exercício de força, os quais acreditam que a ingestão de determinados suplementos nutricionais, após uma sessão de treinamento ou durante o treinamento habitual, possa aumentar o ganho normal na hipertrofia da fibra muscular. Há muitos anos tem-se debatido a questão da quantidade de proteína que um atleta deve consumir. Até o início do século passado, a proteína foi considerada o combustível mais importante para a prática de exercícios físicos. Não obstante, naquela época, começaram a se acumular resultados demonstrando que, na realidade, os principais combustíveis utilizados durante o exercício eram carboidratos e lipídeos. Consequentemente, a opinião científica mudou, passando a acreditar que a prática do exercício físico pouco afetava a necessidade proteica. Entretanto, dados recentes obtidos por meio de novas técnicas experimentais indicam que a prática regular de exercícios pode aumentar a necessidade de proteínas e aminoácidos. Esse aumento da necessidade proteica, causado pelo treinamento, pode ocorrer de forma direta, devido a mudanças no metabolismo de aminoácidos, ou indireta, como resultado do consumo insuficiente de energia. Como praticante de treinamento de força ou fisiculturista, o atleta precisa de mais proteína do que uma pessoa menos ativa. Sua necessidade é um pouco maior que os 0,8g diários/kg de peso da DRI, a qual é baseada nas necessidades de quem não pratica exercício. Garantir a ingestão adequada de proteína para a síntese proteica é fundamental para se otimizar o ganho e manutenção de massa magra quando se quer secar. As recomendações variam de acordo com a modalidade esportiva: modalidades de endurance de 1,0 a 1,6g/kg de peso/dia; modalidades de força e explosão de 1,6 a 2,0g/kg de peso/dia; modalidades intermitentes de 1,4 a 1,7g/kg de peso/dia. É extremamente importante que a proteína seja bem distribuída ao longo do dia em todas as refeições para estimular melhor mTOR e otimizar a síntese proteica. A ingestão de carboidratos imediatamente após o exercício de força pode aumentar a subsequente ressíntese de glicogênio quando comparada ao mesmo intervalo de tempo algumas horas posteriormente, mas a ingestão de carboidratos não garante síntese proteica. A ingestão de uma mistura de aminoácidos ou de um hidrolisado de proteínas após uma sessão de exercício de força estimula a taxa de síntese proteica no músculo humano e promove balanço proteico muscular positivo. Isso acontece por conta dos aminoácidos de cadeia ramificada (ACR), ou de um único aminoácido, como a leucina. No que concerne, esta aumenta a fosforilação de proteínas envolvidas na regulação da síntese proteica, a leucina estimula a mTOR, que sinaliza a hipertrofia muscular. Os ACR podem atuar no balanço proteico muscular também por meio da diminuição da lesão e da degradação proteica muscular induzida pelo exercício físico. A proteína é fundamental em todas as fases da vida e em diferentes estados fisiológicos, considerando, nesse caso, também o exercício físico. O aumento da massa muscular, que representa um objetivo perseguido por atletas em todos os tempos, desde a antiguidade até os dias atuais, especialmente por fisiculturistas, é conseguido somente com muito treinamento e dedicação, alimentação adequada, orientação de treinador capacitado, médico e nutricionista. A quantidade de proteína a ser consumida diariamente por atletas e praticantes de atividade física deve ser preconizada e orientada por profissionais capacitados. Somente dessa forma a proteína exercerá seu papel relevante no processo de síntese proteica no decorrer do treinamento de força, ao mesmo tempo que permitirá a ocorrência de um balanço nitrogenado positivo no adulto. REFERÊNCIAS BIBLIOGRÁFICAS ACADEMY OF NUTRITION AND DIETETICS, AMERICAN COLLEGE OF SPORTS MEDICINE, AND DIETITIANS OF CANADA. Canada, 2016. Disponível em: www.dietitians.ca/sports. Acesso em: 10/09/2016. BIESEK, Simone; ALVES, Letícia Azen; GUERRA, Isabela. Estratégias de Nutrição e Suplementação no Esporte. 2 ed. São Paulo: Editora Manole, 2010. KLEINER, Susan M; GREENWOOR-ROBINSON, Maggie. Nutrição para o Treinamento de Força. 3 ed. São Paulo: Editora Manole, 2009.
- 1 comentário
-
- proteína
- aminoácidos
- (e 2 mais)