chacalll Postado 3 de julho de 2009 Postado 3 de julho de 2009 TÍTULO:Óxido Nítrico:"o Simples Mensageiro Percorrendo A Complexidade., Metabolismo,síntese e funções!!! Revista da Associação Médica Brasileira Print version ISSN 0104-4230 Departamento de Gastroenterologia da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP. UNITERMOS: Óxido Nítrico. Síntases. Metabolismo. Óxido Nítrico mensageiro. INTRODUÇÃO Vamos supor que após ler este artigo, você guarde na sua memória tardia uma parte do que leu. Provavelmente você estará utilizando para isto uma das menores e mais versáteis moléculas do seu organismo: o óxido nítrico (NO - Nitric Oxide). Esta pequena e simples molécula, talvez a menor produzida pelos mamíferos, tem efeitos fascinantes desde a manutenção inicial da vida, através do controle da circulação placentária, ou a indução do início da vida através da regulagem das contrações uterinas no trabalho de parto, como também efeitos letais demonstráveis, por exemplo, no choque séptico. O óxido nítrico é um importante neurotransmissor com capacidade potencializadora, atuando na memória e no aprendizado, podendo também ter ações endócrinas, autócrinas e parácrinas. A sua ação na imuno-regulação está presente na inflamação e nos mecanismos de autoimunidade. Esta molécula tem revolucionado e obrigado revisão de paradigmas da medicina, principalmente em neurologia, cardiologia, nefrologia e gastroenterologia. Este artigo procura mostrar os mecanismos de síntese e formação do óxido nítrico apresentando a enzima envolvida - síntase do óxido nítrico (nitric oxide synthase - NOS) e os efeitos do NO como mensageiro nos principais sistemas do organismo. O início A evidência inicial de óxidos de nitrogênio no metabolismo vieram de experimentos que demonstraram produção de nitratos em camundongos germ-free no início da década de 801. Em 1985 demonstrou-se que macrófagos ativados por lipopossacárides bacterianos eram capazes de levar à produção de nitritos e nitratos2. Na seqüência evidenciou-se que a L-arginina era o substrato e a L-citrulina era formada como co-produto3. Em 1988, Marletta identificou o óxido nítrico como o produto da reação de oxiredução da L-arginina4. Quase que simultaneamente, Furchgott investigava um fator vasodilatador associado ao endotélio vascular (endothelium-derived relaxing factor - EDRF5 e poucos anos mais tarde concluiu-se ser o NO responsável pela atividade biológica do EDRF6. Durante o final da década de 80 e início de 90, a comunidade científica aprofundou pesquisas nesta direção, adicionando importantes conhecimentos sobre o NO como mensageiro (ou sinalizador inter e intracelular) e como toxina, atuando em inúmeros processos patológicos. Características, síntese e metabolismo do NO O óxido nítrico é uma molécula gasosa simples, habitualmente encontrada no ar atmosférico em pequenas quantidades, altamente tóxica devido à presença de radical livre (elétron extra) que a torna um agente químico altamente reativo. Quando diluído, o NO tem uma meia vida de menos de 10 segundos devido à sua rápida oxidação a nitrito e nitrato. O NO liga-se à hemoglobina e outras proteínas que contém o núcleo heme levando ao término de sua atividade biológica7. A fig. 1 indica a clássica reação química de formação do NO, em que a L-arginina é transformada em um intermediário, a NG-hidroxi-L-arginina com a presença de nicotinamida-adenina-dinucleotídeo-fostato-hidrogênio (NADPH) e Ca2+ sendo necessário mais NADPH e O2 para a formação de L-citrulina e NO. A L-arginina é um aminoácido semi-essencial produzido no organismo, porém em quantidade insuficiente para todas necessidades. Além do ciclo da uréia, a arginina é utilizada na síntese de creatinina e fornece ornitina para a síntese de poliaminas9. Como há uma solicitação metabólica continuada da L-arginina, existe uma neo-síntese da L-arginina nos túbulos proximais renais a partir da citrulina. Proteínas ingeridas são degradadas até arginina, que podem ser diretamente absorvidas e utilizadas no ciclo da uréia no tecido hepático, ou transformadas no epitélio intestinal em ornitina que, juntamente com a glutamina secretada como glutamato, são convertidas em citrulina. A citrulina absorvida se transforma em arginina no ciclo renal (fig. 2)9. A citrulina também pode ser convertida diretamente em L-arginina no citoplasma das células endoteliais e dos macrófagos. A síntese enzimática de citrulina (Fig. 1), pode ser inibida por análogos da L-arginina tais como NG-monometil-L-arginina (L-NMMA), NG-nitro-L-arginina (L-NNA) e NG-nitro-L-arginina-metil-éster (L-NAME)7,8. Estes inibidores têm grande importância na pesquisa dos prováveis efeitos do NO nos tecidos, uma vez que a substituição do substrato habitual (L-arginina) pelos análogos irá inibir a produção de NO e seus efeitos conseqüentes. Vale salientar que a D-arginina não substitui a L-arginina nesta reação para formação do NO. A demonstração da produção de NO é ainda difícil, sendo sempre feita de maneira indireta. Aliás, todas pesquisas pioneiras não demonstraram o NO propriamente dito devido sua evanescência, considerando-se a concentração de nitrito e nitrato como prova de sua produção. Outro método de demonstrar o NO, como já citado, é a substituição do substrato por um análogo (L-NNA ou L-NMMA ou L-NAME) sendo a ausência do efeito pesquisado imputado pela não formação de NO devido ao bloqueio da reação da L-arginina à L-citrulina. As isoenzimas da sintase do NO Muitas células são capazes de sintetizar o NO através de hemeproteínas da família citocromo P450-like, chamadas de NO síntases (NOS). As NOS são dependentes de O2, NADPH, flavinas e biopterinas para exercer sua atividade. Até o momento, foram isoladas e clonadas três isoenzimas, sendo duas constitutivas em determinadas células e uma induzível, recebendo as siglas respectivas de cNOS e iNOS. Todas as três isoenzimas são semelhantes estruturalmente, porém reguladas de modo diverso e induzidas a partir de genes localizados nos cromossomos 7 (isoforma I), 12 (isoforma II) e 17 (isoforma III)31. A cNOS ou Isoforma I está presente no cérebro e foi purificada inicialmente no cerebelo do camundongo e do porco10. Na literatura esta enzima pode ser chamada também de bNOS (brain NO synthase) ou nNOS (neuronal NO synthase). Esta proteína, atualmente clonada de cérebros humanos, mantém uma seqüência de aminoácidos altamente conservada entre as espécies, ocorrendo 93% de identidade entre a cNOS de humanos e camundongos9. A iNOS ou Isoforma II não é expressa constitutivamente, ou seja, não está presente de modo habitual, sendo induzida nos macrófagos e outras células por lipopolisacárides bacterianos e/ou citoquinas11. Esta isoenzima também pode ser chamada de macNOS (macrophage NO synthase). Vários grupos clonaram a iNOS também em músculo liso45, hepatócitos de camundongo11 e em hepatócitos humanos12. Vários autores consideram que qualquer célula do organismo tem a capacidade de produzir iNOS sob estímulos apropriados. Uma vez induzida, a iNOS é capaz de produzir NO por longo tempo, e isso vem a caracterizar seu envolvimento em vários processos patológicos. Assim, o alto nível de NO produzido por macrófagos ou por neutrófilos ou outras células ativadas, que deveria ser tóxico para micróbios, parasitas ou células tumorais, pode também lesar células saudáveis vizinhas, sendo este mecanismo responsável pela maioria de processos inflamatórios e autoimunes. A eNOS ou Isoforma III é expressa constitutivamente nas células endoteliais podendo também ser chamada cNOS ou EC-NOS (endothelial constitutive NO synthase). O código genético responsável pela isoforma III foi clonado a partir de células endoteliais de bovinos e humanos13, confirmando o local preferencial de produção e ação. As isoenzimas NOS podem ser, sob ponto de vista prático, caracterizadas como de baixo ou alto débito conforme a duração da atividade da NOS. As isoformas I e III (cNOS e eNOS) são de baixo débito, estando envolvidas em processos homeostáticos como neurotransmissão, peristaltismo, controle imediato da pressão arterial14. Considera-se a eNOS de menor débito do que cNOS. Já a isoenzima II ou iNOS, quando estimulada permanece em atividade por horas com mecanismo de sinergismo de indução inclusive do próprio NO produzido12. Esta ação lhe confere uma importante característica podendo levar à morte da célula15. Outra classificação das NOS é determinada pela sua dependência de cálcio para ativação. O Ca2+ é um importante sinalizador citoplasmático, atuando a partir de ligações com proteínas intracelulares receptoras específicas. Uma destas proteínas citoplasmáticas (Ca2+-receptoras) é a calmodulina, encontrada em praticamente todas células. Quando o Ca2+ se liga à calmodulina forma-se o complexo Ca2+/calmodulina, este, um elemento regulatório de algumas atividades enzimáticas intracelulares. Quando a concentração intracelular de Ca2+ cai, desfaz-se o complexo Ca2+/calmodulina e a atividade enzimática é desativada. Este mecanismo Ca2+/calmodulina é responsável pela ativação da NOS. No caso da cNOS, segue-se o mecanismo descrito, ou seja, é necessária determinada concentração de Ca2+ intracelular para atividade enzimática, ocorrendo inativação da cNOS com queda do Ca2+ citoplasmático abaixo de determinado nível. Para a iNOS, o mecanismo de ação depende da concentração intracelular de Ca2+ somente para ativação, sendo que a queda do Ca2+ intracelular não inibe a atividade da iNOS (Fig. 3). Assim, classificam-se as NOS como cálcio-dependentes (que são as isoformas I e III) e cálcio-independentes (isoforma II)20. A Tabela 1 sumariza as abreviaturas, sinonímia e diferenças quanto ao débito e dependência de Ca2+ das síntases do NO. Estes conhecimentos quanto à classificação e modo de ação das três NOS são importantes para entender os demais mecanismos envolvidos na ação do NO. Aspectos fisiológicos e tóxicos do NO As funções do NO até hoje descobertas são complexas e antagônicas. Um aspecto marcante desta molécula é a sua capacidade de ser benéfica ou potencialmente tóxica conforme a concentração ou depuração tecidual. Alguns autores, como Schmidt16, denominam muito apropriadamente o NO como uma "faca de dois gumes" (double-edged sword). O NO é um importante mensageiro intercelular nos mamíferos superiores. O mecanismo de sinalização intercelular é, em geral, realizado através de receptores de membrana celular na célula alvo; estes receptores são, habitualmente, transmembranosos tendo contato com citoplasma e desencadeando uma "cascata" de sinais intracelulares que finalizarão em uma mudança na célula. Pelas suas características químicas de alta difusibilidade, a sinalização do NO é exercida diretamente em nível intracelular, sem receptores transmembranosos. Devido à sua penetração intracelular sem intermediários membranosos, o organismo utiliza o NO em funções fisiológicas em que é necessária uma resposta rápida. O NO também faz parte do arsenal de primeira defesa do organismo com poder microbicida. Assim, está demonstrado sua ação antibactericida, antiparasítica e antiviral40- 44. Nestes casos, o NO atua em concentrações maiores do que as de mensageiro, sendo tóxico aos microorganismos invasores. Existe um tênue limite de concentração tissular entre a não-toxicidade às células do hospedeiro e a toxicidade necessária para ação antimicrobicida. No caso de doenças autoimunes e situações de sobrecarga exageradas do organismo, o NO encontra-se em concentrações tóxicas para as células do organismo. Portanto, o NO atua como toxina conforme a concentração e o tecido em questão, devendo ainda ser considerada a capacidade de depuração tecidual. A determinação destas concentrações tissulares relativas permanece um segredo da natureza. A Tabela 2 resume algumas ações teciduais do NO como mensageiro ou toxina. Neste artigo, nos restringiremos mais a alguns efeitos do NO como mensageiro nos mais importantes sistemas do organismo, devido à amplitude e complexidade do tema. NO-mensageiro no sistema cardiovascular Devido aos estudos pioneiros do EDRF por Furchgott, a ação vasoprotetora do NO é bem conhecida. O NO antagoniza as contrações da musculatura lisa vascular e inibe a ativação plaquetária. Atuando nas integrinas, o NO modifica a adesividade leucocitária e a diapedese dos neutrófilos5. No endotélio vascular ocorre liberação continuada de NO, responsável pela manutenção do fluxo sangüíneo tecidual e controle do extravasamento tecidual. O NO-mensageiro produzido no endotélio tem função vasodilatadora fisiológica. Assim, durante exercício físico ocorre aumento do débito cardíaco e redistribuição do fluxo sangüíneo para musculatura esquelética e circulação coronariana. Este mecanismo é mediado pela cNOS (eNOS ou isoforma III) cuja expressão genética pode ser potencializada com exercícios aeróbios regulares24. Entretanto, a função principal do NO é a exercida no controle de adesão dos elementos sangüíneos (leucócitos e plaquetas) ao endotélio18. Por este mesmo mecanismo, o NO diminui a permeabilidade vascular. Em estudos com inibição da síntese de NO vascular utilizando-se o análogo L-NAME em intestino de gatos, observa-se aumento da permeabilidade microvascular às proteínas, mediadas por leucócitos e outras células inflamatórias (macrófagos, mastócitos, plaquetas, etc.)19. No miocárdio existe também expressão da isoforma III ou eNOS, determinada por estudos de imunohistoquímica e técnicas de biologia molecular. A eNOS é encontrada nos miócitos, células endoteliais e músculo liso vascular sendo a nNOS achada nos neurônios. O NO-mensageiro atua como inotrópico negativo levando a aumento da dilatação diastólica, sem influenciar os índices de contractilidade miocárdica25. Já a isoforma II ou iNOS pode ser produzida pelas mesmas células sob estímulos como, por exemplo, sepse, miocardite, rejeição de transplante. Quando ocorre aumento do NO em níveis elevados, o NO-toxina induz à disfunção cardíaca característica da síndrome de resposta inflamatória sistêmica (Systemic Inflamatory Response Syndrome - SIRS)26. NO-mensageiro no sistema bronco-pulmonar Em culturas de células alveolares pulmonares epithelium-like, Asano et al. demonstraram atividade basal de NOS constatada como isoforma I ou nNOS, não se constatando eNOS ou isoforma III. Sob estímulo de interferon-gama (IFN-g) isolado ou juntamente com interleucina-1b (IL-1b) mais fator de necrose tumoral- (TNF-a), observou-se produção de RNA-mensageiro da isoforma II ou iNOS21. Considera-se o NO-mensageiro produzido a partir da cNOS como responsável pela homeostase das vias aéreas. O NO mantém o calibre brônquico e regula a freqüência dos movimentos ciliares; na circulação pulmonar, o NO equilibra a relação ventilação-perfusão. A iNOS epitelial bronquial é responsável pela defesa imunológica a agentes externos inalados, principalmente pelo recrutamento de macrófagos epiteliais e subepiteliais22. Isto é configurado pela queda da resistência às infecções broncopulmonares com administração de análogos da L-arginina in vitro e in vivo3. NO-mensageiro no sistema renal O NO-mensageiro é sintetizado nos rins fisiologicamente, exercendo importantes funções de homeostase no fluxo sangüíneo e excreção renal. O bloqueio experimental da produção do NO-mensageiro leva à diminuição da irrigação renal e queda da eliminação de sódio27. Nos rins foram isoladas as três isoformas da NOS. Na mácula densa constatou-se forte presença da isoforma I ou nNOS e nas arteríolas glomerulares foram encontradas as isoformas I e III (nNOS e eNOS) nos ramos aferentes e eferentes, com maior concentração nas arteríolas eferentes. A presença da isoforma I é importante nos vasos aferentes pré-glomerulares pela estreita correlação com liberação de renina28. A ação do NO-mensageiro sobre a secreção do sistema renina-angiotensina tem óbvias implicações terapêuticas, porém os achados ainda são discrepantes. Em um estudo com infusão de análogo da L-arginina (L-NMMA) em voluntários sadios, observou-se aumento da pressão arterial média (+7%) com aumento da resistência periférica (+36%) sem aumento do fluxo sangüíneo renal, porém com aumento da resistência vascular renal (+21%) seguido de queda da filtração glomerular (-19%), queda do fluxo urinário (-18%) e da eliminação de sódio (-25%), sem aumento da atividade plasmática da renina29. Outro estudo semelhante, porém em cães, em que foi utilizado a L-NAME juntamente com bloqueio da mácula densa pelo modelo de rim não-filtrante, mostrou que o bloqueio intrarenal de NO aumenta a secreção de renina em nível renal, ocorrendo elevação plasmática somente no rim com bloqueio simultâneo da mácula densa30. Portanto, à medida que as pesquisas avançam, surgem fortes indícios que o NO está envolvido no mecanismo da hipertensão arterial. Na glomerulonefrite observa-se produção exagerada do NO que é devido à indução da iNOS, expressa a partir de macrófagos nos glomérulos27 com infiltração leucocitária e aumento da permeabilidade vascular com conseqüente proteinúria. NO-mensageiro no sistema nervoso O NO é um poderoso vasodilatador cerebral mantendo o fluxo cerebral basal e levando a aumento do fluxo sangüíneo sob atividade neuronal intensa32. A isoforma I ou nNOS foi historicamente purificada em cérebros de camundongo e porco10, como já citado. Porém, também a eNOS e a iNOS estão presentes e são importantes nas funções fisiológicas e estão envolvidas em várias patologias do SNC. A nNOS e eNOS podem intercambiar funções, como demonstrado em estudos de camundongos modificados geneticamente com ausência da nNOS, em que se observou manutenção da função neurológica às custas da eNOS33. O NO-mensageiro é considerado um neurotransmissor. Devido as suas características de alta difusibilidade, como já citado, o NO é capaz de penetrar no citoplasma celular diretamente, sem necessidade de receptores de membrana, levando a respostas rápidas e precisas . O hipocampo é uma das áreas de pesquisa mais promissoras da ação do NO no SNC. Sabe-se que, quando o hipocampo é destruído em ambos hemisférios cerebrais, em mamíferos, os mesmos perdem a capacidade de reter memórias novas. Entre os múltiplos neurotransmissores excitatórios do SNC, destaca-se o glutamato. Entre os receptores de glutamato existem os receptores de N-metil-D-aspartato (NMDA) - pertencentes à subclasse de glutamato. Estes receptores recebem o nome de NMDA devido ao fato de serem estimulados seletivamente pelo N-metil-D-aspartato, que é um análogo do glutamato. Além dos receptores NMDA estarem preferencialmente situados no hipocampo, animais com bloqueio específico dos receptores NMDA perdem a capacidade de aprendizado. Nos receptores NMDA um estímulo pode levar à própria potencialização. Este mecanismo é conhecido como Long-Term Potentiation (LTP), consistindo de um sistema progressivo e prolongado do estímulo, mesmo com estímulo inicial em condições submáximas. O envolvimento do NO-mensageiro no mecanismo da LTP foi primeiramente demonstrado por Böhme, em um experimento com camundongos, em que o bloqueio de formação de NO levou à ausência de condicionamento e de resposta olfatória34,35. Em nível de sinapse neuronal, após estímulo do neurônio à montante, ocorre liberação de glutamato que vai se ligar aos receptores NMDA. Enquanto persistir esta união (glutamato/receptor NMDA), o Ca2+ é capaz de entrar no citoplasma do neurônio à jusante levando à produção da nNOS. Assim, o NO é liberado na pós-sinapse após estímulo pré-sináptico submáximo, funcionando como mensageiro retrógrado para a pré-sinapse e reiniciando todo o processo (Fig. 4). Os receptores NMDA estão envolvidos na memória tardia cuja indução pelo mecanismo da LTP culmina com alterações de proteínas celulares à jusante, resultando em aquisição de experiências e conhecimentos16. Esta linha de pesquisa é intensa devido às implicações na dificuldade de aprendizado em crianças e falhas de memória em adultos. Também existe esperança de melhor conhecimento da fisiopatologia da doença de Alzheimer. O eqüivalente dos macrófragos no cérebro são as células microgliais. As células gliais em cultura mostram capacidade de indução da iNOS, mais fortemente presente quando há o estímulo tríplice de IFN-g, IL-1b e LPS bacteriano38. Existem fortes evidências que a iNOS pode estar envolvida, além dos processos bacterianos e virais, em processos neurodegenerativos e outras condições que levam à liberação de citoquinas no cérebro tais como traumas e isquemias39. REFERÊNCIAS BIBLIOGRÁFICAS VCS ENCONTRAM NO SITE,NÃO POSTEI AQUI PQ É CHEIO DE LINKS ALIADO AS BIBLIOGRAFIAS: TÍTULO:Óxido Nítrico:"o Simples Mensageiro Percorrendo A Complexidade., Metabolismo,síntese e funções!!! Revista da Associação Médica Brasileira Print version ISSN 0104-4230 Departamento de Gastroenterologia da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP. UNITERMOS: Óxido Nítrico. Síntases. Metabolismo. Óxido Nítrico mensageiro. INTRODUÇÃO Vamos supor que após ler este artigo, você guarde na sua memória tardia uma parte do que leu. Provavelmente você estará utilizando para isto uma das menores e mais versáteis moléculas do seu organismo: o óxido nítrico (NO - Nitric Oxide). Esta pequena e simples molécula, talvez a menor produzida pelos mamíferos, tem efeitos fascinantes desde a manutenção inicial da vida, através do controle da circulação placentária, ou a indução do início da vida através da regulagem das contrações uterinas no trabalho de parto, como também efeitos letais demonstráveis, por exemplo, no choque séptico. O óxido nítrico é um importante neurotransmissor com capacidade potencializadora, atuando na memória e no aprendizado, podendo também ter ações endócrinas, autócrinas e parácrinas. A sua ação na imuno-regulação está presente na inflamação e nos mecanismos de autoimunidade. Esta molécula tem revolucionado e obrigado revisão de paradigmas da medicina, principalmente em neurologia, cardiologia, nefrologia e gastroenterologia. Este artigo procura mostrar os mecanismos de síntese e formação do óxido nítrico apresentando a enzima envolvida - síntase do óxido nítrico (nitric oxide synthase - NOS) e os efeitos do NO como mensageiro nos principais sistemas do organismo. O início A evidência inicial de óxidos de nitrogênio no metabolismo vieram de experimentos que demonstraram produção de nitratos em camundongos germ-free no início da década de 801. Em 1985 demonstrou-se que macrófagos ativados por lipopossacárides bacterianos eram capazes de levar à produção de nitritos e nitratos2. Na seqüência evidenciou-se que a L-arginina era o substrato e a L-citrulina era formada como co-produto3. Em 1988, Marletta identificou o óxido nítrico como o produto da reação de oxiredução da L-arginina4. Quase que simultaneamente, Furchgott investigava um fator vasodilatador associado ao endotélio vascular (endothelium-derived relaxing factor - EDRF5 e poucos anos mais tarde concluiu-se ser o NO responsável pela atividade biológica do EDRF6. Durante o final da década de 80 e início de 90, a comunidade científica aprofundou pesquisas nesta direção, adicionando importantes conhecimentos sobre o NO como mensageiro (ou sinalizador inter e intracelular) e como toxina, atuando em inúmeros processos patológicos. Características, síntese e metabolismo do NO O óxido nítrico é uma molécula gasosa simples, habitualmente encontrada no ar atmosférico em pequenas quantidades, altamente tóxica devido à presença de radical livre (elétron extra) que a torna um agente químico altamente reativo. Quando diluído, o NO tem uma meia vida de menos de 10 segundos devido à sua rápida oxidação a nitrito e nitrato. O NO liga-se à hemoglobina e outras proteínas que contém o núcleo heme levando ao término de sua atividade biológica7. A fig. 1 indica a clássica reação química de formação do NO, em que a L-arginina é transformada em um intermediário, a NG-hidroxi-L-arginina com a presença de nicotinamida-adenina-dinucleotídeo-fostato-hidrogênio (NADPH) e Ca2+ sendo necessário mais NADPH e O2 para a formação de L-citrulina e NO. A L-arginina é um aminoácido semi-essencial produzido no organismo, porém em quantidade insuficiente para todas necessidades. Além do ciclo da uréia, a arginina é utilizada na síntese de creatinina e fornece ornitina para a síntese de poliaminas9. Como há uma solicitação metabólica continuada da L-arginina, existe uma neo-síntese da L-arginina nos túbulos proximais renais a partir da citrulina. Proteínas ingeridas são degradadas até arginina, que podem ser diretamente absorvidas e utilizadas no ciclo da uréia no tecido hepático, ou transformadas no epitélio intestinal em ornitina que, juntamente com a glutamina secretada como glutamato, são convertidas em citrulina. A citrulina absorvida se transforma em arginina no ciclo renal (fig. 2)9. A citrulina também pode ser convertida diretamente em L-arginina no citoplasma das células endoteliais e dos macrófagos. A síntese enzimática de citrulina (Fig. 1), pode ser inibida por análogos da L-arginina tais como NG-monometil-L-arginina (L-NMMA), NG-nitro-L-arginina (L-NNA) e NG-nitro-L-arginina-metil-éster (L-NAME)7,8. Estes inibidores têm grande importância na pesquisa dos prováveis efeitos do NO nos tecidos, uma vez que a substituição do substrato habitual (L-arginina) pelos análogos irá inibir a produção de NO e seus efeitos conseqüentes. Vale salientar que a D-arginina não substitui a L-arginina nesta reação para formação do NO. A demonstração da produção de NO é ainda difícil, sendo sempre feita de maneira indireta. Aliás, todas pesquisas pioneiras não demonstraram o NO propriamente dito devido sua evanescência, considerando-se a concentração de nitrito e nitrato como prova de sua produção. Outro método de demonstrar o NO, como já citado, é a substituição do substrato por um análogo (L-NNA ou L-NMMA ou L-NAME) sendo a ausência do efeito pesquisado imputado pela não formação de NO devido ao bloqueio da reação da L-arginina à L-citrulina. As isoenzimas da sintase do NO Muitas células são capazes de sintetizar o NO através de hemeproteínas da família citocromo P450-like, chamadas de NO síntases (NOS). As NOS são dependentes de O2, NADPH, flavinas e biopterinas para exercer sua atividade. Até o momento, foram isoladas e clonadas três isoenzimas, sendo duas constitutivas em determinadas células e uma induzível, recebendo as siglas respectivas de cNOS e iNOS. Todas as três isoenzimas são semelhantes estruturalmente, porém reguladas de modo diverso e induzidas a partir de genes localizados nos cromossomos 7 (isoforma I), 12 (isoforma II) e 17 (isoforma III)31. A cNOS ou Isoforma I está presente no cérebro e foi purificada inicialmente no cerebelo do camundongo e do porco10. Na literatura esta enzima pode ser chamada também de bNOS (brain NO synthase) ou nNOS (neuronal NO synthase). Esta proteína, atualmente clonada de cérebros humanos, mantém uma seqüência de aminoácidos altamente conservada entre as espécies, ocorrendo 93% de identidade entre a cNOS de humanos e camundongos9. A iNOS ou Isoforma II não é expressa constitutivamente, ou seja, não está presente de modo habitual, sendo induzida nos macrófagos e outras células por lipopolisacárides bacterianos e/ou citoquinas11. Esta isoenzima também pode ser chamada de macNOS (macrophage NO synthase). Vários grupos clonaram a iNOS também em músculo liso45, hepatócitos de camundongo11 e em hepatócitos humanos12. Vários autores consideram que qualquer célula do organismo tem a capacidade de produzir iNOS sob estímulos apropriados. Uma vez induzida, a iNOS é capaz de produzir NO por longo tempo, e isso vem a caracterizar seu envolvimento em vários processos patológicos. Assim, o alto nível de NO produzido por macrófagos ou por neutrófilos ou outras células ativadas, que deveria ser tóxico para micróbios, parasitas ou células tumorais, pode também lesar células saudáveis vizinhas, sendo este mecanismo responsável pela maioria de processos inflamatórios e autoimunes. A eNOS ou Isoforma III é expressa constitutivamente nas células endoteliais podendo também ser chamada cNOS ou EC-NOS (endothelial constitutive NO synthase). O código genético responsável pela isoforma III foi clonado a partir de células endoteliais de bovinos e humanos13, confirmando o local preferencial de produção e ação. As isoenzimas NOS podem ser, sob ponto de vista prático, caracterizadas como de baixo ou alto débito conforme a duração da atividade da NOS. As isoformas I e III (cNOS e eNOS) são de baixo débito, estando envolvidas em processos homeostáticos como neurotransmissão, peristaltismo, controle imediato da pressão arterial14. Considera-se a eNOS de menor débito do que cNOS. Já a isoenzima II ou iNOS, quando estimulada permanece em atividade por horas com mecanismo de sinergismo de indução inclusive do próprio NO produzido12. Esta ação lhe confere uma importante característica podendo levar à morte da célula15. Outra classificação das NOS é determinada pela sua dependência de cálcio para ativação. O Ca2+ é um importante sinalizador citoplasmático, atuando a partir de ligações com proteínas intracelulares receptoras específicas. Uma destas proteínas citoplasmáticas (Ca2+-receptoras) é a calmodulina, encontrada em praticamente todas células. Quando o Ca2+ se liga à calmodulina forma-se o complexo Ca2+/calmodulina, este, um elemento regulatório de algumas atividades enzimáticas intracelulares. Quando a concentração intracelular de Ca2+ cai, desfaz-se o complexo Ca2+/calmodulina e a atividade enzimática é desativada. Este mecanismo Ca2+/calmodulina é responsável pela ativação da NOS. No caso da cNOS, segue-se o mecanismo descrito, ou seja, é necessária determinada concentração de Ca2+ intracelular para atividade enzimática, ocorrendo inativação da cNOS com queda do Ca2+ citoplasmático abaixo de determinado nível. Para a iNOS, o mecanismo de ação depende da concentração intracelular de Ca2+ somente para ativação, sendo que a queda do Ca2+ intracelular não inibe a atividade da iNOS (Fig. 3). Assim, classificam-se as NOS como cálcio-dependentes (que são as isoformas I e III) e cálcio-independentes (isoforma II)20. A Tabela 1 sumariza as abreviaturas, sinonímia e diferenças quanto ao débito e dependência de Ca2+ das síntases do NO. Estes conhecimentos quanto à classificação e modo de ação das três NOS são importantes para entender os demais mecanismos envolvidos na ação do NO. Aspectos fisiológicos e tóxicos do NO As funções do NO até hoje descobertas são complexas e antagônicas. Um aspecto marcante desta molécula é a sua capacidade de ser benéfica ou potencialmente tóxica conforme a concentração ou depuração tecidual. Alguns autores, como Schmidt16, denominam muito apropriadamente o NO como uma "faca de dois gumes" (double-edged sword). O NO é um importante mensageiro intercelular nos mamíferos superiores. O mecanismo de sinalização intercelular é, em geral, realizado através de receptores de membrana celular na célula alvo; estes receptores são, habitualmente, transmembranosos tendo contato com citoplasma e desencadeando uma "cascata" de sinais intracelulares que finalizarão em uma mudança na célula. Pelas suas características químicas de alta difusibilidade, a sinalização do NO é exercida diretamente em nível intracelular, sem receptores transmembranosos. Devido à sua penetração intracelular sem intermediários membranosos, o organismo utiliza o NO em funções fisiológicas em que é necessária uma resposta rápida. O NO também faz parte do arsenal de primeira defesa do organismo com poder microbicida. Assim, está demonstrado sua ação antibactericida, antiparasítica e antiviral40- 44. Nestes casos, o NO atua em concentrações maiores do que as de mensageiro, sendo tóxico aos microorganismos invasores. Existe um tênue limite de concentração tissular entre a não-toxicidade às células do hospedeiro e a toxicidade necessária para ação antimicrobicida. No caso de doenças autoimunes e situações de sobrecarga exageradas do organismo, o NO encontra-se em concentrações tóxicas para as células do organismo. Portanto, o NO atua como toxina conforme a concentração e o tecido em questão, devendo ainda ser considerada a capacidade de depuração tecidual. A determinação destas concentrações tissulares relativas permanece um segredo da natureza. A Tabela 2 resume algumas ações teciduais do NO como mensageiro ou toxina. Neste artigo, nos restringiremos mais a alguns efeitos do NO como mensageiro nos mais importantes sistemas do organismo, devido à amplitude e complexidade do tema. NO-mensageiro no sistema cardiovascular Devido aos estudos pioneiros do EDRF por Furchgott, a ação vasoprotetora do NO é bem conhecida. O NO antagoniza as contrações da musculatura lisa vascular e inibe a ativação plaquetária. Atuando nas integrinas, o NO modifica a adesividade leucocitária e a diapedese dos neutrófilos5. No endotélio vascular ocorre liberação continuada de NO, responsável pela manutenção do fluxo sangüíneo tecidual e controle do extravasamento tecidual. O NO-mensageiro produzido no endotélio tem função vasodilatadora fisiológica. Assim, durante exercício físico ocorre aumento do débito cardíaco e redistribuição do fluxo sangüíneo para musculatura esquelética e circulação coronariana. Este mecanismo é mediado pela cNOS (eNOS ou isoforma III) cuja expressão genética pode ser potencializada com exercícios aeróbios regulares24. Entretanto, a função principal do NO é a exercida no controle de adesão dos elementos sangüíneos (leucócitos e plaquetas) ao endotélio18. Por este mesmo mecanismo, o NO diminui a permeabilidade vascular. Em estudos com inibição da síntese de NO vascular utilizando-se o análogo L-NAME em intestino de gatos, observa-se aumento da permeabilidade microvascular às proteínas, mediadas por leucócitos e outras células inflamatórias (macrófagos, mastócitos, plaquetas, etc.)19. No miocárdio existe também expressão da isoforma III ou eNOS, determinada por estudos de imunohistoquímica e técnicas de biologia molecular. A eNOS é encontrada nos miócitos, células endoteliais e músculo liso vascular sendo a nNOS achada nos neurônios. O NO-mensageiro atua como inotrópico negativo levando a aumento da dilatação diastólica, sem influenciar os índices de contractilidade miocárdica25. Já a isoforma II ou iNOS pode ser produzida pelas mesmas células sob estímulos como, por exemplo, sepse, miocardite, rejeição de transplante. Quando ocorre aumento do NO em níveis elevados, o NO-toxina induz à disfunção cardíaca característica da síndrome de resposta inflamatória sistêmica (Systemic Inflamatory Response Syndrome - SIRS)26. NO-mensageiro no sistema bronco-pulmonar Em culturas de células alveolares pulmonares epithelium-like, Asano et al. demonstraram atividade basal de NOS constatada como isoforma I ou nNOS, não se constatando eNOS ou isoforma III. Sob estímulo de interferon-gama (IFN-g) isolado ou juntamente com interleucina-1b (IL-1b) mais fator de necrose tumoral- (TNF-a), observou-se produção de RNA-mensageiro da isoforma II ou iNOS21. Considera-se o NO-mensageiro produzido a partir da cNOS como responsável pela homeostase das vias aéreas. O NO mantém o calibre brônquico e regula a freqüência dos movimentos ciliares; na circulação pulmonar, o NO equilibra a relação ventilação-perfusão. A iNOS epitelial bronquial é responsável pela defesa imunológica a agentes externos inalados, principalmente pelo recrutamento de macrófagos epiteliais e subepiteliais22. Isto é configurado pela queda da resistência às infecções broncopulmonares com administração de análogos da L-arginina in vitro e in vivo3. NO-mensageiro no sistema renal O NO-mensageiro é sintetizado nos rins fisiologicamente, exercendo importantes funções de homeostase no fluxo sangüíneo e excreção renal. O bloqueio experimental da produção do NO-mensageiro leva à diminuição da irrigação renal e queda da eliminação de sódio27. Nos rins foram isoladas as três isoformas da NOS. Na mácula densa constatou-se forte presença da isoforma I ou nNOS e nas arteríolas glomerulares foram encontradas as isoformas I e III (nNOS e eNOS) nos ramos aferentes e eferentes, com maior concentração nas arteríolas eferentes. A presença da isoforma I é importante nos vasos aferentes pré-glomerulares pela estreita correlação com liberação de renina28. A ação do NO-mensageiro sobre a secreção do sistema renina-angiotensina tem óbvias implicações terapêuticas, porém os achados ainda são discrepantes. Em um estudo com infusão de análogo da L-arginina (L-NMMA) em voluntários sadios, observou-se aumento da pressão arterial média (+7%) com aumento da resistência periférica (+36%) sem aumento do fluxo sangüíneo renal, porém com aumento da resistência vascular renal (+21%) seguido de queda da filtração glomerular (-19%), queda do fluxo urinário (-18%) e da eliminação de sódio (-25%), sem aumento da atividade plasmática da renina29. Outro estudo semelhante, porém em cães, em que foi utilizado a L-NAME juntamente com bloqueio da mácula densa pelo modelo de rim não-filtrante, mostrou que o bloqueio intrarenal de NO aumenta a secreção de renina em nível renal, ocorrendo elevação plasmática somente no rim com bloqueio simultâneo da mácula densa30. Portanto, à medida que as pesquisas avançam, surgem fortes indícios que o NO está envolvido no mecanismo da hipertensão arterial. Na glomerulonefrite observa-se produção exagerada do NO que é devido à indução da iNOS, expressa a partir de macrófagos nos glomérulos27 com infiltração leucocitária e aumento da permeabilidade vascular com conseqüente proteinúria. NO-mensageiro no sistema nervoso O NO é um poderoso vasodilatador cerebral mantendo o fluxo cerebral basal e levando a aumento do fluxo sangüíneo sob atividade neuronal intensa32. A isoforma I ou nNOS foi historicamente purificada em cérebros de camundongo e porco10, como já citado. Porém, também a eNOS e a iNOS estão presentes e são importantes nas funções fisiológicas e estão envolvidas em várias patologias do SNC. A nNOS e eNOS podem intercambiar funções, como demonstrado em estudos de camundongos modificados geneticamente com ausência da nNOS, em que se observou manutenção da função neurológica às custas da eNOS33. O NO-mensageiro é considerado um neurotransmissor. Devido as suas características de alta difusibilidade, como já citado, o NO é capaz de penetrar no citoplasma celular diretamente, sem necessidade de receptores de membrana, levando a respostas rápidas e precisas . O hipocampo é uma das áreas de pesquisa mais promissoras da ação do NO no SNC. Sabe-se que, quando o hipocampo é destruído em ambos hemisférios cerebrais, em mamíferos, os mesmos perdem a capacidade de reter memórias novas. Entre os múltiplos neurotransmissores excitatórios do SNC, destaca-se o glutamato. Entre os receptores de glutamato existem os receptores de N-metil-D-aspartato (NMDA) - pertencentes à subclasse de glutamato. Estes receptores recebem o nome de NMDA devido ao fato de serem estimulados seletivamente pelo N-metil-D-aspartato, que é um análogo do glutamato. Além dos receptores NMDA estarem preferencialmente situados no hipocampo, animais com bloqueio específico dos receptores NMDA perdem a capacidade de aprendizado. Nos receptores NMDA um estímulo pode levar à própria potencialização. Este mecanismo é conhecido como Long-Term Potentiation (LTP), consistindo de um sistema progressivo e prolongado do estímulo, mesmo com estímulo inicial em condições submáximas. O envolvimento do NO-mensageiro no mecanismo da LTP foi primeiramente demonstrado por Böhme, em um experimento com camundongos, em que o bloqueio de formação de NO levou à ausência de condicionamento e de resposta olfatória34,35. Em nível de sinapse neuronal, após estímulo do neurônio à montante, ocorre liberação de glutamato que vai se ligar aos receptores NMDA. Enquanto persistir esta união (glutamato/receptor NMDA), o Ca2+ é capaz de entrar no citoplasma do neurônio à jusante levando à produção da nNOS. Assim, o NO é liberado na pós-sinapse após estímulo pré-sináptico submáximo, funcionando como mensageiro retrógrado para a pré-sinapse e reiniciando todo o processo (Fig. 4). Os receptores NMDA estão envolvidos na memória tardia cuja indução pelo mecanismo da LTP culmina com alterações de proteínas celulares à jusante, resultando em aquisição de experiências e conhecimentos16. Esta linha de pesquisa é intensa devido às implicações na dificuldade de aprendizado em crianças e falhas de memória em adultos. Também existe esperança de melhor conhecimento da fisiopatologia da doença de Alzheimer. O eqüivalente dos macrófragos no cérebro são as células microgliais. As células gliais em cultura mostram capacidade de indução da iNOS, mais fortemente presente quando há o estímulo tríplice de IFN-g, IL-1b e LPS bacteriano38. Existem fortes evidências que a iNOS pode estar envolvida, além dos processos bacterianos e virais, em processos neurodegenerativos e outras condições que levam à liberação de citoquinas no cérebro tais como traumas e isquemias39. REFERÊNCIAS BIBLIOGRÁFICAS VCS ENCONTRAM NO SITE,NÃO POSTEI AQUI PQ É CHEIO DE LINKS ALIADO AS BIBLIOGRAFIAS: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-42302000000300012 Descobri esse site numa discussão em outro fórum e o moderador Aledef mandou esse link sobre Óxido Nitrico
chacalll Postado 11 de julho de 2009 Autor Postado 11 de julho de 2009 minha idéia é fazer NO c/substâncias puras,manipulado... tenho ctza q isso vai render muito parecido c/NO de qualidade e podendo chegar a dar+ganhos pq acho q são tds substâncias puras e nós sabemos realmente qtidade em mg/gr de cada um pq em suplementos ta descrito+não diz dose exata de cada componete CEE-4-7gr/dia(Creatina estíl esther essas q vem nos NO's top) Arginina-3-7gr/dia L-Ornitina 300mg/dia Taurina-2-3gr/dia Cafeína-400mg/dia Vit-C-2gr/dia e talvez Lisina Arginina, Ortinina e Lisina A Arginina é necessária para o metabolismo da ureia, um processo que prepara a amónia tóxica para uma excreção segura pelos rins. A Ornitina é sintetizada através da arginina e é prercursora da citrulina, prolina e ácido glutâmico. A Lisina é um componente essencial de todas as proteínas. Em conjunto, estes nutrientes são bem absorvidos e utilizados pelo organismo. A ingestão oral de Arginina e Ornitina aumenta os níveis circulantes de várias hormonas, especialmente a hormona de crescimento e a insulina. Assim, o efeito ergogénico destes aminoácidos é atribuído aos efeitos anabólicos destas hormonas. A finalidade destes dois aminoácidos é aumentar a massa muscular, diminuir a flacidez e a astenia, aumentar a potência e a força muscular, diminuir a percentagem de massa gorda corporal e aumentar o crescimento e também precursora de N0 '' Oxido nitrico'' . A Lisina é importante para o crescimento saudável e desempenha um papel essencial na produção de carnitina, um nutriente responsável por converter ácidos gordos em energia. A Lisina parece ajudar o organismo a absorver e conservar o cálcio e tem um papel fundamental na formação de colagénio, uma substância importante para os ossos e tecidos conectivos, como a pele, tendões e cartilagens.
juninhoto Postado 11 de julho de 2009 Postado 11 de julho de 2009 bem grandinho em, mas vo ler UAHUhuAHAUE
danvalia Postado 11 de julho de 2009 Postado 11 de julho de 2009 chacall acompanhei o topico no outro forum do cara que tomou seu NO2 e pelo visto teve bons ganhos. mas pelo que eu entendi no NO2 que voce fez pra ele nao tinha L-Ornitina 300mg/dia nem Lisina. Estou certo ou tinha isso tambem no NO2 dele?
chacalll Postado 14 de julho de 2009 Autor Postado 14 de julho de 2009 blza mano,vc leu relato no hipertrofia do meu cliente, legal mano,ele ta cumprindo c/qlqr NO de qualidade, ta dando vascularização/vasodilatação e explosão animal naquele não tem ornitina e lisina não,eu q penso em add+eles p/ajudar+++ qlqr duvida sobre esse combo me mande msg ou add msn q ta na assinatura,vale apena pq fazemos a dose e sabemos a dose exata de cada composto,pq NO's prontos vem td misturado e s/ preescrever td em cada dose. bons treinos
DIJA100% Postado 15 de julho de 2009 Postado 15 de julho de 2009 OQE TA EM NEGRITO É RECEITA P MANIPULAR???
chacalll Postado 15 de julho de 2009 Autor Postado 15 de julho de 2009 alguns não vendem s/receita... +aquilo é oq tenho intenção de fazer e isso consigo compra facil
Visitante sgtmlg Postado 15 de julho de 2009 Postado 15 de julho de 2009 alguns não vendem s/receita... +aquilo é oq tenho intenção de fazer e isso consigo compra facil E a quantidade de lisina?
chacalll Postado 16 de julho de 2009 Autor Postado 16 de julho de 2009 qto a lisina não sei ainda pq não li a fundo sobre ela e desconheço doses +deve ser menos de 1gr/dia,não sei tem q ver esses componentes são p/aumentar volume muscular,força,resistência, vasodilatação/vascularização
Post Destacado
Crie uma conta ou entre para comentar
Você precisar ser um membro para fazer um comentário
Criar uma conta
Crie uma conta 100% gratuita!
Crie uma nova contaEntrar
Já tem uma conta? Faça o login.
Entrar agora