Ir para conteúdo

Qual é a quantidade ideal de proteínas para a hipertrofia muscular?

Pedro Alvim Neto
  • , 3841 visualizações

A proteína é um nutriente vital para os seres vivos, pois consiste em uma macromolécula presente em todas as células de organismos vivos. Como os carboidratos e as gorduras, as proteínas contêm átomos de carbono, hidrogênio e oxigênio, diferindo-se pela presença, principalmente, de nitrogênio (16% da molécula), juntamente com enxofre, fósforo e ferro.

As proteínas são formadas por combinações dos vinte aminoácidos em diversas proporções e cumprem funções estruturais, reguladoras, de defesa e de transporte nos fluídos biológicos.

Os aminoácidos livres estão em equilíbrio dinâmico na célula e nos fluidos biológicos, o qual é dependente do anabolismo e do catabolismo orgânico, sendo esse processo denominado turnover proteico. Os principais tecidos responsáveis por esse equilíbrio são o muscular e visceral, sendo estas últimas responsáveis pela síntese de proteínas sanguíneas fundamentais na homeostase celular. As melhores fontes proteicas são de origem animal, no entanto, a ingestão de misturas de cereais e leguminosas nos fornecem também as quantidades de aminoácidos necessárias para a síntese proteica.

As proteínas ocupam uma posição chave na reparação e na formação de tecido muscular depois do exercício. Ao levantar um peso, os músculos são forçados a se alongar quando prefeririam se contrair. Essa ação causa minúsculas rupturas nas fibras musculares, que são a razão da dor muscular sentida 1 ou 2 dias após o exercício intenso. Em resposta, o organismo faz as fibras musculares aumentarem de tamanho e as fortalece para protegê-las de rompimentos futuros.

O material de construção para esse processo provém principalmente da proteína alimentar, desmembrada em aminoácidos durante a digestão. Como explicado anteriormente, os aminoácidos entram na corrente sanguínea e são transportados para as células musculares para serem sintetizados em proteínas. Há dois tipos principais de proteína muscular: actina e miosina. No desenvolvimento muscular, ocorre o aumento quantitativo de actina e miosina, e este processo faz com que as fibras musculares aumentem em diâmetro e força e se contraiam com mais vigor.

A digestão das proteínas começa no estômago, com a enzima pepsina secretada no suco gástrico, seguida pela ação das enzimas proteolíticas provenientes do pâncreas e da mucosa do intestino delgado. Essas enzimas não são secretadas na forma ativa, mas como proenzimas ou zimogêneos; posteriormente, pela ação de outros compostos, são ativadas pela perda de uma hidrólise parcial. Assim, por exemplo, ácido clorídrico do estômago desnatura as proteínas e transforma o pepsinogênio em pepsina. Essa enzima começa a clivagem das proteínas dos alimentos, principalmente das ligações envolvendo os aminoácidos aromáticos e a leucina.

As proenzimas pancreáticas são ativadas pela enteroquinase do suco intestinal, que transforma o tripsinogênio em tripsina por meio do processo de hidrólise, o qual é continuado por uma ativação em cascata das outras proenzimas pancreáticas pela ação da tripsina. A secreção de enzimas proteolíticas parece ser regulada pela presença de proteína da dieta no intestino delgado.

Os eventos que ocorrem no intestino durante a digestão de proteínas estão bem estabelecidos. As enzimas do suco pancreático mostram uma grande especificidade, especialmente nas ligações adjacentes à lisina ou à arginina (tripsina) ou nos aminoácidos aromáticos (quimio-tripsina) e ainda nos aminoácidos alifáticos neutros (elastase).

A maior parte da proteína que entra no intestino, quer de origem dietética, quer de origem endógena, é digerida e absorvida na forma de aminoácidos. Para uma ingestão diária média de proteína de 90 a 100g, a contribuição das secreções digestivas endógenas equivale aproximadamente a 60 a 70g, que no intestino são digeridas e absorvidas; proteínas plasmáticas (~2g) e 6 a 12g de proteína aparecem nas fezes.

Outro fator importante na absorção das proteínas dos alimentos é a sua digestibilidade, que é definida como a relação entre proteína ou nitrogênio absorvido e proteína ou nitrogênio ingerido. Em geral, as proteínas de origem animal têm digestibilidade ao redor de 90 e 95%, como se verifica no leite, na carne e no ovo. As proteínas dos vegetais têm digestibilidade menor.

Após a absorção intestinal, os aminoácidos são transportados diretamente ao fígado pelo sistema porta. Esse órgão exerce um papel importante como modulador da concentração de aminoácidos plasmáticos. Cerca de 20% dos aminoácidos que entram no fígado são liberados para a circulação sistêmica, cerca de 50% são transformados em uréia e 6% em proteínas plasmáticas. Os aminoácidos liberados na circulação sistêmica, especialmente os de cadeia ramificada (isoleucina, leucina e valina) são depois metabolizados pelo músculo esquelético, pelos rins e por outros tecidos.

O destino dos aminoácidos em cada tecido varia de acordo com as necessidades de momento daquele tecido, havendo um equilíbrio dinâmico entre as proteínas tissulares, os aminoácidos ingeridos pela dieta e os aminoácidos circulantes.

Há um contínuo processo dinâmico de síntese e catabolismo proteico, específico em cada tecido, denominado, como já vimos, turnover proteico. A vida média de uma proteína corresponde ao tempo que o organismo leva para renovar a metade da quantidade dela. Certas enzimas intracelulares têm vida média de algumas horas. A hemoglobina tem vida média de 120 dias e o colágeno, cerca de 365 dias.

Como fonte de energia, as proteínas são equivalentes aos carboidratos, fornecendo 4kcal/g. No entanto elas são consideradas mais “caras” do que os carboidratos, pois demandam maior quantidade de energia para a sua metabolização. Sendo assim, uma condição fundamental para se garantir a adequada utilização pelo organismo da proteína ingerida é que seja satisfeita a necessidade energética, pois a deficiência de energia acarreta em desvio de proteínas a partir de suas funções plásticas e reparadoras em detrimento da produção de energia.

Entre os 21 aminoácidos naturais, vários devem estar presentes na dieta para satisfazer as necessidades do organismo, enquanto outros não; em consequência, a qualidade nutricional das proteínas pode ser determinada pelo tipo e pela quantidade de seus aminoácidos constituintes.

Alguns aminoácidos são classificados como essenciais porque sua síntese no organismo é inadequada para satisfazer as necessidades metabólicas e devem ser fornecidos como parte da dieta. Esses aminoácidos são: treonina, triptofano, histidina, lisina, leucina, isoleucina, metionina, valina, fenilanina e possivelmente arginina. Ausência ou inadequada ingestão de alguns desses aminoácidos resulta em balanço nitrogenado negativo, perda de peso, crescimento menor em crianças e pré-escolares e sintomatologia clínica.

Os aminoácidos não essenciais – alanina, ácido aspártico, asparagina, ácido glutâmico, glicina, prolina e serina – são igualmente importantes na estrutura proteica; no entanto, se houver deficiência na ingestão de um deles, ele pode ser sintetizado em nível celular a partir de aminoácidos essenciais ou de precursores contendo carbono e nitrogênio.

Pode parecer que quanto mais material de construção (proteína) o organismo recebe, mais músculo ele desenvolve. Pelo menos é esta a linha de pensamento seguida pelos atletas de força há anos. No entanto, não é bem assim que funciona. Comer o dobro de proteína não dobrará o volume dos músculos. Além disso, outro problema de quem come proteína demais é que o excesso pode ser armazenado no organismo em forma de gordura.

Para criar massa muscular é preciso manter um balanço nitrogenado positivo. Mas isso não significa necessariamente que se deve ingerir mais proteína. As células musculares assimilam a quantidade exata de nutrientes de que necessitam para o crescimento, e o treinamento de força contribui para que elas aproveitem melhor as proteínas disponíveis.

O exercício de força representa um potente estímulo para a ocorrência de hipertrofia na fibra muscular em humanos. O processo de hipertrofia ocorre quando a taxa de síntese proteica muscular excede a taxa de degradação, acarretando em saldo positivo do balanço proteico muscular. O aumento desse saldo ocorre após uma única sessão de exercício de força, sendo geralmente aceito que o crescimento muscular ocorre após semanas ou meses de treinamento como consequência das elevações crônicas e transitórias na síntese proteica, que supera a degradação proteica durante o período de recuperação entre as sessões consecutivas de treinamento. A síntese proteica muscular pode permanecer elevada por até 48 horas pós- exercício.

Visando maximizar o ganho de massa muscular, é necessário otimizar os fatores que promovem a síntese proteica e diminuem a degradação proteica. Não obstante, uma miríade de potenciais fatores pode influenciar no metabolismo proteico muscular, incluindo tipo, intensidade, frequência e duração do exercício, fatores hormonais e a extensão do período de recuperação. Além disso, fatores nutricionais podem influenciar no metabolismo proteico, sendo que tais intervenções nutricionais são comumente difundidas entre atletas e praticantes recreacionais de exercício de força, os quais acreditam que a ingestão de determinados suplementos nutricionais, após uma sessão de treinamento ou durante o treinamento habitual, possa aumentar o ganho normal na hipertrofia da fibra muscular.

Há muitos anos tem-se debatido a questão da quantidade de proteína que um atleta deve consumir. Até o início do século passado, a proteína foi considerada o combustível mais importante para a prática de exercícios físicos. Não obstante, naquela época, começaram a se acumular resultados demonstrando que, na realidade, os principais combustíveis utilizados durante o exercício eram carboidratos e lipídeos. Consequentemente, a opinião científica mudou, passando a acreditar que a prática do exercício físico pouco afetava a necessidade proteica. Entretanto, dados recentes obtidos por meio de novas técnicas experimentais indicam que a prática regular de exercícios pode aumentar a necessidade de proteínas e aminoácidos. Esse aumento da necessidade proteica, causado pelo treinamento, pode ocorrer de forma direta, devido a mudanças no metabolismo de aminoácidos, ou indireta, como resultado do consumo insuficiente de energia.

Como praticante de treinamento de força ou fisiculturista, o atleta precisa de mais proteína do que uma pessoa menos ativa. Sua necessidade é um pouco maior que os 0,8g diários/kg de peso da DRI, a qual é baseada nas necessidades de quem não pratica exercício.

Garantir a ingestão adequada de proteína para a síntese proteica é fundamental para se otimizar o ganho e manutenção de massa magra quando se quer secar. As recomendações variam de acordo com a modalidade esportiva:

  • modalidades de endurance de 1,0 a 1,6g/kg de peso/dia;
  • modalidades de força e explosão de 1,6 a 2,0g/kg de peso/dia;
  • modalidades intermitentes de 1,4 a 1,7g/kg de peso/dia.

É extremamente importante que a proteína seja bem distribuída ao longo do dia em todas as refeições para estimular melhor mTOR e otimizar a síntese proteica.

A ingestão de carboidratos imediatamente após o exercício de força pode aumentar a subsequente ressíntese de glicogênio quando comparada ao mesmo intervalo de tempo algumas horas posteriormente, mas a ingestão de carboidratos não garante síntese proteica.

A ingestão de uma mistura de aminoácidos ou de um hidrolisado de proteínas após uma sessão de exercício de força estimula a taxa de síntese proteica no músculo humano e promove balanço proteico muscular positivo. Isso acontece por conta dos aminoácidos de cadeia ramificada (ACR), ou de um único aminoácido, como a leucina. No que concerne, esta aumenta a fosforilação de proteínas envolvidas na regulação da síntese proteica, a leucina estimula a mTOR, que sinaliza a hipertrofia muscular.

Os ACR podem atuar no balanço proteico muscular também por meio da diminuição da lesão e da degradação proteica muscular induzida pelo exercício físico.

A proteína é fundamental em todas as fases da vida e em diferentes estados fisiológicos, considerando, nesse caso, também o exercício físico.

O aumento da massa muscular, que representa um objetivo perseguido por atletas em todos os tempos, desde a antiguidade até os dias atuais, especialmente por fisiculturistas, é conseguido somente com muito treinamento e dedicação, alimentação adequada, orientação de treinador capacitado, médico e nutricionista.

A quantidade de proteína a ser consumida diariamente por atletas e praticantes de atividade física deve ser preconizada e orientada por profissionais capacitados. Somente dessa forma a proteína exercerá seu papel relevante no processo de síntese proteica no decorrer do treinamento de força, ao mesmo tempo que permitirá a ocorrência de um balanço nitrogenado positivo no adulto.

 

REFERÊNCIAS BIBLIOGRÁFICAS

ACADEMY OF NUTRITION AND DIETETICS, AMERICAN COLLEGE OF SPORTS MEDICINE, AND DIETITIANS OF CANADA. Canada, 2016. Disponível em: www.dietitians.ca/sports. Acesso em: 10/09/2016.
BIESEK, Simone; ALVES, Letícia Azen; GUERRA, Isabela. Estratégias de Nutrição e Suplementação no Esporte. 2 ed. São Paulo: Editora Manole, 2010.
KLEINER, Susan M; GREENWOOR-ROBINSON, Maggie. Nutrição para o Treinamento de Força. 3 ed. São Paulo: Editora Manole, 2009.

 

 

Entre para seguir isso  

Comentários

Comentários Destacados

Observando-se os dados fornecidos na matéria, vamos tomar como exemplo uma pessoa de 80 kgs.

Para hipertrofia, são recomendados 1,6 a 2 g de proteína por kg corporal por dia.

Portanto, a ingestão diária de proteínas, no caso do nosso exemplo, deve ser de 128 a 160 g de proteínas por dia.

E como recomendado, a ingestão deve ser distribuída ao longo do dia, e não apenas numa única refeição.

Compartilhar este comentário


Link para o comentário
Compartilhar em outros sites


Crie uma conta ou entre para comentar

Você precisar ser um membro para fazer um comentário

Criar uma conta

Crie uma conta em nossa comunidade! É rápido, fácil e grátis!

Crie uma nova conta

Entrar

Já tem uma conta? Faça o login.

Entrar agora

  • Conteúdo Similar

    • Por Jorge Felipe Farias
      Quanto maior o volume do treino, maiores as chances de hipertrofia
      Existe uma relação de dose e resposta entre o volume total de treinamento e o nível de hipertrofia muscular. Quanto maior for esse volume de treino, maiores são as chances de se obter resultados positivos em hipertrofia. 
      Mais frequência de treino gera mais hipertrofia?
      Uma das variáveis que podem influenciar na prescrição do treino, e nos ganhos de força muscular, é a frequência com a qual se treina e se estimula certa musculatura. 
      Um estudo de meta-análise sobre frequências de treino entre 1 (uma) até 4 (quatro) vezes por semana identificou que quanto maior a foi frequência de treino, maiores foram os ganhos. Isso está certo? 
      Neste estudo, não houve equalização do volume de treino na semana. O indivíduo que treinou com mais frequência, treinou com mais volume.
      Com base no mesmo estudo, realizando-se outra meta-análise, demonstrou-se que o ganho de força é o mesmo para o mesmo volume de treino semanal, independentemente de ser o treino muito frequente (4 vezes por semana) ou infrequente (1 vez por semana).  
      Portanto, o volume total é a variável que determina os ganhos de força, e não necessariamente a frequência. A frequência serve para ajustar o volume total semanal do seu treino.
      Variáveis do treinamento e hipertrofia
      Em outras meta-análises, estudos testaram diferentes tipos de prescrição de treino (intensidade de carga, número de séries, frequência semanal, intervalo entre às séries, e etc) e diferentes metodologias avançadas de treinamento (drop-sets, bi-sets e etc). 
      Conclui-se que quando se equaliza o volume total (n°. de séries x nº. de repetições x carga x frequência) entre os grupos estudados, não há diferença nos resultados. Essa conclusão atesta a importância maior do volume de treino sobre as demais variáveis.
      Por outro lado, quando essas variáveis ou métodos são aplicados sem a equalização do volume total, permitindo-se que um grupo de indivíduos estudado realize um maior volume de treino, esse grupo comumente apresenta maiores ganhos. 
      Isso demonstra que boa parte da aplicação desses métodos avançados de treinamento, assim como o aumento do número de séries, frequência semanal ou intervalo entre as séries, promovem mais hipertrofia por permitirem maior volume de treino.
      Qual é o volume ideal de treino para hipertrofia?
      Em relação à curva em U invertido (ponto ótimo do volume máximo de treino, a partir do qual o aumento do volume de treino se torna exagerado e prejudicial à hipertrofia, podendo causar overtraining), é nebulosa a identificação da dose/volume onde os resultados do aumento de volume deixariam de ser positivos. 
      Inexistem dados suficientes para demonstrar o volume ótimo ou ideal de treino semanal. Portanto, se alguém se encontra resistente para os ganhos de massa muscular e não está hipertrofiando com o estímulo de treino adotado, simplesmente aumentar o volume do treinamento pode ser uma estratégia  eficiente para promover ganhos hipertróficos.
      Fases do treinamento e sugestão de volume de treino
      Apesar de inexistirem estudos científicos suficientes para seja apontado um volume ideal ou ótimo de treino, existe um certo consenso no conhecimento empírico por evidências de bons resultados com as seguintes práticas, com base em 3 (três) fases de periodização do treinamento:
      Base; Choque; Regenerativo. Na fase de base, devem ser realizadas de 9 (nove) a 12 (doze) séries por grupo muscular por semana.
      Em seguida, na fase de choque, é dobrado o valor de base, ou seja, devem ser realizadas de 18 (dezoito) a 24 (vinte e quatro) séries por grupo muscular por semana.
      Por fim, na fase regenerativa, que deve ser preferencialmente incluída após a fase de choque, devem ser realizadas 6 (seis) a 9 (nove) séries por grupamento muscular (redução aproximada de ⅔ do volume de treino da fase de choque).
      Qual é o número ideal de treinos por semana (frequência)?
      Após todas as considerações feitas acima, podemos concluir que não existe uma resposta certa para essa pergunta. Anotamos que o volume de treino semanal é o elemento mais importante para a hipertrofia muscular. Também anotamos que o volume sugerido de treino pode variar entre as fases de periodização do seu treino.
      Para calcular a melhor frequência de treino, devem ser considerados os grupos musculares que serão trabalhados, a fase de treinamento, a quantidade de grupos musculares treinados num dia, e o respeito a um limite máximo de duração da sessão de treinamento, que normalmente não deve ultrapassar 1 (uma) hora.
      Portanto, dependendo de todos esses fatores, provavelmente a frequência de treino semanal pode oscilar entre 3 (três) a 7 (sete) vezes na semana. A complexidade no planejamento adequado de um treinamento efetivo para hipertrofia aponta para o acompanhamento de um profissional de educação física para obtenção dos melhores resultados.
       
      Referências:
      Figueiredo VC, de Salles BF, Trajano GS. Volume for Muscle Hypertrophy and Health Outcomes: The Most Effective Variable in Resistance Training. Sport Med. DOI 10.1007/s40279-017-0793-0
      Grgic, et al (2018) Effect of Resistance Training Frequency on Gains in Muscular Strength: A Systematic Review and Meta-Analysis. Sports Med https://link.springer.com/article/10.1007/s40279-018-0872-x
    • Por pedrolopes665
      UNIVERSIDADE FEDERAL DE SANTA CATARINA – UFSC
      DEPARTAMENTO DE EDUCAÇÃO FÍSICA – DEF
      PROGRAMA ESPACIAL DE TREINAMENTO – PET

      "A RELEVÂNCIA DOS INTERVALOS DE REPOUSO ENTRE AS SÉRIES NO TREINAMENTO DE MUSCULAÇÃO OBJETIVANDO A HIPERTROFIA MUSCULAR"

      Autor: ROGER HANSEN

      Orientador: PROF. PAULO MARCELO SOARES DE MACEDO

      FLORIANÓPOLIS, MAIO DE 2002.
      Introdução
      A utilidade e importância do treinamento com pesos ( como também se denomina a musculação) tem sido relevada cada vez mais pelos diversos objetivos que podem ser atingidos através de sua utilização em relação à melhora da performance e condicionamento físico. Algumas finalidades da musculação são as seguintes:
      Terapêuticas: Para tratar de lesões corporais e correção postural; Profiláticas: Para prevenir doenças como a Osteoporose; Psicológicas: Para aliviar a mente de tensões do dia a dia. Diminuição da agressividade e ansiedade. Estéticas: Para modificar a massa corporal, objetivando formas esteticamente desejáveis. Específicas: Para aprimorar uma qualidade física específica necessária para um melhor desempenho esportivo de determinada modalidade esportiva(Godoy, 1994).Atualmente pode-se constatar que um dos motivos que mais tem levado as pessoas a procurarem uma academia de musculação é o aperfeiçoamento da estética corporal. Com isso, é possível constatar que muitas pessoas buscam um treinamento de musculação visando o ganho de massa muscular (hipertrofia muscular). Para este fim, é necessário que se dê atenção específica para os diversos fatores relacionados à intensidade do treinamento. Porém, muitos praticantes acabam tratando a musculação como um simples "puxar de ferros", realizando treinamentos inadequados, o que pode vir a comprometer sua saúde e tornar cada vez mais difícil a obtenção de resultados positivos. Sabe-se, portanto, que a musculação é norteada por uma série de princípios e variáveis que influenciam de forma significativa e precisa em seus resultados finais, ou seja, na meta almejada.
      O treinamento deve ser elaborado de acordo com as características únicas de cada indivíduo, determinadas geneticamente (Princípio da Individualidade).
      A partir disso deve-se ter claro o objetivo que pretende-se atingir a fim de que se possa prescrever o treinamento adequado para tal meta, contendo exercícios que desenvolvam as qualidades ou grupos musculares específicos (Princípio da Especificidade).
      É necessário também que se estabeleça o número ou quantidade dos exercícios, número de séries, número de treinos na semana (caracterizando o Volume de treino), bem como o percentual de carga a ser utilizada, a velocidade dos movimentos, a duração dos intervalos de descanso (o que caracteriza a Intensidade do treinamento), fazendo com que haja um equilíbrio ou harmonia entre estes fatores ( Princípio de Interdependência Volume x Intensidade).
      E para que exista uma evolução constante no treinamento, é preciso que se aumente periodizadamente as cargas de trabalho ( Princípio da Sobrecarga) (Godoy, 1994).

      Dentre estes vários princípios citados, existem ainda diversos fatores a se pensar no momento de se elaborar um treinamento. Neste trabalho pretende-se abordar um dos fatores intervenientes na intensidade do treinamento com pesos: Os Intervalos de Repouso Entre as Séries, quando o objetivo é a Hipertrofia Muscular.

      A principal razão que motivou a realização deste estudo é justamente a falta de clareza sobre o assunto, tanto na literatura assim como quando se questiona os profissionais da área da atividade física.
      Isso se confirma pelas palavras de Santarém(2001), quando questionado sobre o assunto: (...) "Não conheço trabalhos que tenham explorado esse assunto. Eu mesmo estou aguardando uma nova metodologia (Ressonância Magnética Quantitativa) para algum trabalho no tema".

      A partir disso pôde-se perceber que existem muitas dúvidas a respeito do controle adequado dos intervalos de repouso entre as séries para que o treinamento de hipertrofia muscular se torne mais eficiente.
      Julga-se, portanto, que esta variável do treinamento de musculação não pode ser desprezada de forma alguma, podendo representar não só o atingimento ou não da meta pretendida, mas também trazer implicações importantes quanto à saúde do praticante.

      Os Sistemas Energéticos do Corpo Humano

      O Corpo humano dispõe de três vias metabólicas ou produtoras de energia, sendo que a predominância de uma ou outra depende da intensidade e duração da atividade (Brooks, 1998).

      Sistema Anaeróbio Alático (ATP/CP)

      Este é o sistema de energia imediata do corpo. Predomina em esforços explosivos, ou seja, movimentos que necessitam de rapidez e força, como interceptar uma bola de futebol que venha na direção da pessoa velozmente ou correr intensamente por poucos metros para tomar um ônibus.
      O sistema anaeróbio alático é caracterizado pelo ATP ( Adenosina Trifosfato) e CP (Creatina Fosfato). O ATP é a forma imediata disponível de energia necessária para a contração muscular e ação motora. É usado para todos os processos que requerem energia nas células do corpo (Brooks, 1998). O ATP é desintegrado resultando em: (ADP + P).

      A creatina fosfato (CP) é uma molécula semelhante ao ATP, a qual é desintegrada liberando uma grande quantidade de energia da seguinte maneira: (C + P). A função da creatina fosfato é ceder o fosfato resultante de sua decomposição para a molécula de ADP (adenosina difosfato), sendo que desta forma a energia e reconstruída após as novas ligações:

      De acordo com Dantas (1998), é a maior quantidade de creatina fosfato estocada na célula que permite que o sistema anaeróbico alático tenha uma duração um pouco mais longa.

      Segundo Fox et al(1989), o restabelecimento destas ligações, ou seja, o tempo que o sistema ATP/CP necessita para se recompor é de 3 a 5 minutos.

      Sistema Anaeróbio Lático (Glicolítico)

      Apesar do sistema ATP/CP fornecer grandes quantidades de energia em um curto espaço de tempo, seu esgotamento se dá no 8o / 10o segundo( intensidade muito alta) ou 15o / 20o segundo (intensidade moderada) (Mathews e Fox, 1986).

      Portanto, para que um esforço de alta intensidade possa ser mantido por mais tempo, como em uma prova de 100m rasos, o corpo disponibiliza outro mecanismo para a obtenção de energia, a Glicólise Anaeróbia.
       
      Desta forma, como menciona Brooks (1998) e Mathews e Fox (1986), a energia necessária para reconstruir ATP/CP vem principalmente da Glicose e Glicogênio, sendo este último desintegrado quimicamente, através de uma série de reações, tendo como conseqüência a produção de Ácido Lático, o que limita este sistema de obtenção de energia.

      Segundo Brooks (1998), o tempo para a fadiga na Glicólise Anaeróbia é de 1 a 3 minutos. De acordo com Fox et al (1989), a ressíntese do glicogênio muscular, principal compontente energético deste sistema, requer um período de 5 a 24 horas de descanso, de acordo com a intensidade da atividade.

      O Sistema Aeróbio (Oxidativo)

      De acordo com Brooks (1998), este é o sistema mais complexo para a obtenção de energia. O sistema aeróbio, como indica o nome, caracteriza-se pela utilização de O2 para a obtenção de energia. O principal composto energético deste sistema são os carboidratos e as gorduras.

      Segundo Katch e McArdle(1996), o sistema aeróbio é utilizado predominantemente em atividades de longa duração, em exercícios realizados por mais de 3 a 4 minutos.

      O tempo necessário para a reposição do glicogênio muscular após exercícios contínuos é de 10 a 46 horas (Fox et al, 1989).

      Hipertrofia Muscular (Hipertrofia e Sobrecargas Metabólica e Funcional)

      A hipertrofia muscular é definida como um aumento da área de secção transversa de um músculo (Mathews e Fox, 1986).

      Segundo Santarém(1999), o principal mecanismo de hipertrofia é a multiplicação das miofibrilas protéicas com capacidade contrátil, que ocorre como adaptação à sobrecarga tensional nos músculos em atividade. Este tipo de aumento do volume muscular é denominado Hipertrofia Miofibrilar ou Crônica.

      A Sobrecarga Tensional é definida por Santarém(1999) como sendo diretamente proporcional à resistência oposta ao movimento. Pode-se afirmar, de outro modo, que a sobrecarga tensional é indicada pela carga utilizada, baixas repetições e intervalos de descanso longos a fim de proporcionar a recuperação dos músculos e do sistema energético.

      Segundo Mathews e Fox(1986), uma das alterações bioquímicas e em relação às próprias fibras musculares decorrentes do treinamento com pesos diz respeito a uma redução no volume (densidade) de mitocôndrias, devida a aumentos no tamanho das miofibrilas e no volume sarcoplasmático.
      Portanto, existe outro tipo ou mecanismo de hipertrofia muscular chamado de Hipertrofia Metabólica ou Sarcoplasmática. Este processo é desencadeado pelo aumento de certas substâncias no citoplasma da célula muscular (sarcoplasma), promovendo um conseqüente aumento no tamanho da musculatura.

      Com base nas afirmações de Dantas(1998) representa-se a seguir a elevação da concentração dessas substâncias após 5 meses de treinamento anaeróbio:

      As adaptações do corpo promovendo hipertrofia metabólica ou sarcoplasmática ocorrem através de outro tipo de sobrecarga ( diferente da tensional), a Sobecarga Metabólica, a qual é argumentada por Santarém(1999) como um aumento de atividade dos processos de produção de energia.
      Esta sobrecarga se dá basicamente por dois mecanismos, o aumento da hidratação muscular (intracelular) e o aumento da vascularização do tecido muscular (extracelular). A sobrecarga metabólica pode ser manipulada pelos seguintes fatores: Elevação do número de repetições e ou diminuição dos intervalos de descanso entre as séries.

      Existem diferenças significativas entre os dois mecanismos de hipertrofia muscular citados, as quais são perfeitamente descritas por Santarém(1999):

      (...)"a hipertrofia muscular ocorre lentamente porque a síntese protéica é um processo lento, e pode atingir grande magnitude. A diminuição de volume muscular no destreinamento também é relativamente lenta, devido ao fato de que as miofibrilas passam a ser parte integrante das células. Já a Hipertrofia Metabólica ocorre rapidamente porque o acúmulo de glicogênio é um processo relativamente rápido. A magnitude da hipertrofia, no entanto, é menor, pelo menos a curto prazo. Isto devido ao processo ser limitado pela saturação do glicogênio intracelular (torno de 4,5 gramas). A perda de volume muscular com o destreinamento é rápida devido ao caráter não estrutural do glicogênio e da água" (p. 1).

      A Relevância dos Intervalos de Repouso Entre as Séries

      Os intervalos de repouso entre as séries constituem um fator muito importante quando se tem por objetivo a Hipertrofia Muscular. A respeito disso Bompa(2000), faz a seguinte consideração: (...) "O intervalo de repouso entre as séries é talvez o componente mais importante do treinamento quando o objetivo é a hipertrofia" (p. 70).

      De acordo com Fleck e Kraemer(1999), recentemente foi demonstrada a influência que os períodos de descanso têm na determinação do estresse do treino e no total de carga que pode ser utilizada.
      Os intervalos de repouso entre as séries e exercícios influenciam em aspectos como o grau de recuperação de energia ATP-CP, na concentração de lactato no sangue e também podem influenciar fatores como a fadiga e a ansiedade.
      Os períodos curtos de descanso (1 minuto ou menos) têm sérias implicações psicológicas (talvez pelo maior esforço exigido, mais desconforto e elevação das demandas metabólicas a exemplo da alta produção de lactato) que devem ser levadas em consideração quando se planeja um treinamento.

      Concordando com Santarém(1999), a elevação das cargas não indica, isoladamente, a intensidade do treinamento, é necessário que se considere os intervalos de descanso e o grau de esforço empregado na movimentação da carga.
      Portanto, é preciso que se entenda os intervalos de descanso entre as séries como uma variável de suma importância, inerente à intensidade ideal do treinamento Também, de acordo com Bompa(2000) um inadequado intervalo de descanso entre as séries causa aumento na participação do sistema Anaeróbio Lático na produção de energia.
      O acúmulo de ácido lático (decorrente deste sistema energético) leva à dor e à fadiga, podendo trazer prejuízos ao treinamento.

      Deve-se considerar ainda que nos intervalos de descanso o coração bombeia o maior volume de sangue para o músculo exercitado, sendo que um intervalo muito curto de descanso leva à redução da quantidade de sangue que chega ao músculo treinado (impedindo o devido suporte de combustível de oxigênio). Deste modo, o atleta, devido à falta de energia, não terá condições de completar o treinamento (Bompa, 2000).

      Na defesa de intervalos mais prolongados encontra-se afirmações como a de Godoy(1994):
      (...)" os intervalos de descanso devem permitir a ressíntese dos fosfagênios para o próximo esforço, a manutenção do nível de lactato sangüíneo em proporções suportáveis, e o restabelecimento da freqüência cardíaca em níveis mais confortáveis" (p. 42).

      Em contrapartida, Bompa(2000), afirma que quando se tem por objetivo a hipertrofia muscular (no caso do fisiculturismo, por exemplo) o treino deve ser planejado de forma que as reservas energéticas (ATP-CP) sejam depletadas afim de que se comprometa a energia disponível para o músculo exercitado. Uma das maneiras de se atingir este objetivo é reduzindo os intervalos de repouso entre as séries (30 a 45 segundos). Esse pensamento é argumentado da seguinte forma:

      (...)" quando é dado ao corpo um tempo muito curto de descanso o músculo tem menor tempo para restaurar as reservas energéticas, ATP-CP. Como uma série até a exaustão depleta as reservas de ATP-CP e o curto intervalo de descanso não proporciona a recuperação completa dessas reservas, o músculo é forçado a adaptar-se, aumentando a sua capacidade de transporte de energia, o que resulta no estímulo ao crescimento muscular. Isso ocorre graças ao aumento do conteúdo de CP nas células musculares e à ativação do metabolismo protéico, fatores que, por sua vez, estimulam a hipertrofia" (p.72).

      Considerações Finais

      Como pode-se observar, a partir da análise das opiniões dos autores pesquisados, existem pontos divergentes e pontos em comum entre as recomendações a respeito dos intervalos de repouso entre as séries no treinamento de hipertrofia muscular.

      Analisando-se o pensamento de Bompa(2000), percebe-se que o autor aponta diversos problemas e ou desvantagens na utilização de intervalos muito curtos entre as séries, como o acúmulo excessivo de ácido lático e irrigação sangüínea insuficiente no músculo exercitado.
      Porém o mesmo autor coloca que um treinamento visando a hipertrofia muscular deve ser realizado com intervalos curtos, não permitindo a recuperação total do sistema anaeróbio alático (ATP-CP), fazendo com que o organismo promova adaptações que induzam ao aumento do volume muscular.

      Esta afirmação contradiz, no entanto, o pensamento de Godoy(1994), o qual ressalta que os intervalos devem proporcionar a recuperação do sistema ATP-CP antes do próximo esforço.
      Porém o pensamento de Bompa(2000), parece ser bem fundamentado, indo ao encontro do que afirma Dantas(1998), quando relaciona as substâncias contidas no sarcoplasma e seus respectivos aumentos percentuais, decorrentes de adaptações ao treinamento anaeróbio (vide quadro I), e também em relação à teoria da Hipertrofia Metabólica apresentada por Santarém(1999).

      Finalmente, tomando-se como base o presente estudo, é possível que se faça algumas recomendações quanto ao controle dos intervalos de repouso entre as séries. Desta forma torna-se possível um melhor entendimento da importância desta variável, efetivando o objetivo central do treinamento, a hipertrofia muscular, e, também, evitando o insucesso e possíveis lesões relacionados ao desequilíbrio na interdependência entre a intensidade e o volume do treinamento.

      Portanto, destaca-se os seguintes aspectos a serem levados em consideração, principalmente:

      Período de Adaptação ao Treinamento
      Como se sabe, a intensidade do treinamento deve ser elevada progressivamente a fim de se obter melhoras na performance. Porém, antes de se elevar a intensidade mediante a intervenção em fatores como os intervalos de repouso entre as séries, por exemplo, deve-se ter como garantia que o praticante passou por um período inicial adequado de adaptação ao treinamento. Assim, tem-se uma redução das possibilidades de lesão principalmente em relação aos tecidos conjuntivos como tendões e ligamentos.

      Equilíbrio Adequado Entre Volume e Intensidade
      Sabendo-se que os intervalos de repouso entre as séries constituem uma das variáveis da intensidade do treinamento, deve-se cuidar para que na redução dos tempos de intervalo haja conseqüentemente uma diminuição do número de séries e/ou de repetições e/ou da freqüência de treinos, ou seja, no volume do treinamento. Também é necessário que se evite a elevação conjunta de duas variáveis da intensidade do treinamento. A exemplo disso pode-se citar uma elevação da carga (peso utilizado) juntamente com a redução dos tempos de intervalos entre as séries.

      Com isto, visa-se principalmente evitar lesões agudas nos tecidos conjuntivos, bem como nos sistemas muscular e esquelético, e também problemas crônicos como o sobretreinamento e suas conseqüências, decorrentes do excesso de sobrecarga no treinamento.

      Considerações Quanto ao Período de Treinamento
      Tendo-se o aumento do volume muscular como objetivo principal do treinamento, pode-se intervir nos intervalos de repouso entre as séries de diferentes formas de acordo com o período ou estágio de treinamento.
      Considera-se, portanto, que no início da temporada de treinamento deve-se utilizar intervalos de repouso médios ou longos entre as séries (1min e 30 seg. a 3 min), o que permite a utilização de cargas de trabalho maiores devido ao maior tempo de repouso, priorizando-se desta forma a Hipertrofia Crônica ou Miofibrilar, a qual se caracteriza por sua consistência devido ao aumento da secção transversa da fibra muscular.

      Por outro lado, nos períodos que se aproximam da competição ou temporada em que se deseja atingir o pico de desenvolvimento muscular, recomenda-se a utilização de intervalos curtos(30 seg. a 1min e 30 seg.), o que, associado de forma ideal às demais variáveis do treinamento proporciona uma Hipertrofia Aguda ou Metabólica, a qual, mesmo sendo menos consistente ou duradoura, permite uma melhor apresentação da musculatura (em termos estéticos) em um menor período de tempo.

      REFERÊNCIAS

      BOMPA, Tudor O. ; CORBACCIA, Lorenzo J. Treinamento de força consciente. Tradução de Dilmar Pinto Guedes. São Paulo: Phorte, 2000.

      BROOKS, Douglas S. Os sistemas de energia do corpo. In:______. Treinamento personalizado: elaboração e montagem de programas. Tradução de Emilson Calantonio. Guarulhos, SP: Phorte, 2000. 336p. cap 4.

      DANTAS, Estélio. H. M. Sistemas de transferência energética. In:______. A prática da preparação física. 4. ed. Rio de Janeiro: Shape, 1998. 399 p. cap. 5.

      FLECK, Steven J.; KRAEMER, William J. Fundamentos do treinamento de força muscular. Tradução de Cecy R. Maduro. 2 ed. Porto Alegre: Artmed, 1999. 247p.

      FOX, Edward L. ; MATHEWS, Donal K. Fontes energéticas. In:______. Bases fisiológicas da educação física e dos desportos. Tradução de Giuseppe Taranto. 3. ed. Rio de Janeiro: Guanabara Koogan, 1986. 488 p. cap. 2.

      FOX, Edward L. ; BOWERS, Richard W. ; FOSS, Merle L. Fontes energéticas. In:______. Bases fisiológicas da educação física e dos desportos. Tradução de Giuseppe Taranto. 4. ed. Rio de Janeiro: Guanabara Koogan, 1989. 518 p. cap. 2-3.

      GODOY, Eric Salum. Musculação – Fitness. [s. l.] : Sprint, 1994. 127p.

      KATCH, Frank I. ; McARDLE, William. Nutrição, exercício e saúde. Tradução de Maurício L. Rocha. Rio de Janeiro: Medsi, 1996. 657p.

      SANTARÉM, José Maria. Treinamento de força e potência. In:______. GHORAYEB, Nabil; BARROS, Turíbio. O exercício: preparação fisiológica, avaliação médica, aspecto especiais e preventivos. São Paulo: Atheneu, 1999. 496p. cap. 4. (35-50).

      SANTARÉM, José Maria. Atualização em exercícios resistidos: hipertrofia muscular. Saúde Total, [ S.I.], 8 nov. 2001. Acesso em: 2 de maio de 2002.

      SANTARÉM, José Maria. Trabalho sobre exercícios resistidos. [mensagem pessoal]. Mensagem recebida por < rogerhansen@bol.com.br> em 11de nov. 2001.

      BIBLIOGRAFIA

      MAUGHAN, Ron et al. Bioquímica do exercício e do treinamento. Tradução de Elisabeth de Oliveira. São Paulo: Manole, 2000. 241p.

      WEINECK, Jürgen. Treinamento ideal. Tradução de Beatriz M. R. Carvalho. 9. ed. São Paulo: Manole, 1999. 731p.

      ELLIOT, Bruce; MESTER, Joachim. Treinamento no esporte: aplicando ciência no treinamento. Vários tradutores. Guarulhos-SP: Phorte, 2000.

      SANTOS, Vanderlei. Guia prático de musculação. [s. I.], 1989. 125p.

      VOLPI, Liliam Maria. Avaliação do efeito agudo de uma sessão de musculação nos perímetros do corpo humano. 2001. TCC ( Monografia em Licenciatura em Educação Física) – Centro de Desportos, Universidade Federal de Santa Catarina

    • Por Mestre
      Originalmente postado pelo usuário JOTAEME



      A turma mais jovem da maromba de hoje tem uma grande vantagem em relação ao pessoal, vamos dizer, mais antigo no negócio (e eu fico enquadrado nessa categoria dos coroas). Com o aparecimento e a popularização da internet, é cada vez mais simples e rápido que as informações se espalhem. E o interessante é que isso gerou um outro tipo de comportamento: a vontade de muita gente de soltar informações.
      Os bodybuilders profissionais não ficaram de fora disso, e atualmente é possível encontrarmos bons artigos escritos pelo próprio atleta, ou até uma transcrição de tudo que foi dito em um determinado seminário encabeçado por algum desses profissionais, e ainda com mais um aspecto interessante, que é saber do próprio cara como ele treinava, comia e suplementava. O que fica de fora, por razões óbvias, é o uso de esteróides e outras drogas.
      A pouco tempo, um grande símbolo do bodybulding profissional, o britânico Dorian "the shadow" Yates, seis vezes vencedor do título de Mr. Olympia, tem se mostrado bem disposto e acessível a quem se interesse por temas ligados a toda sua preparação na época das competições. E é sobre a relação entre Yates e a proteína que vamos tratar agora .
      Curiosamente, Dorian, que teve seu auge nos anos 90, diz que raramente as publicações especializadas se interessavam pelo modo como ele comia, mas sempre buscavam informações sobre seus métodos de treino, o que era uma pena, porque segundo o próprio Yates, após sua primeira vitória como Mr. Olympia em 1992, o mutante inglês teve acesso a muitos técnicos e nutricionistas, e ele credita às dúvidas e sugestões que obteve com esse pessoal o principal fator para seu reinado olímpico.
      Em relação a proteína, Dorian diz que o segredo é saber quais os melhores tipos de proteína para você, determinar a quantidade correta a ser consumida, e em quais momentos do dia.
      O NÚMERO MÁGICO
      Em seus seminários recentes, Dorian sempre é questionado sobre a quantidade de proteína que utilizava em sua época de competição. Para ele, não existe essa "verdade" de que só conseguimos absorver 30 gramas de proteína por refeição, a cada três horas. Houveram períodos da sua dieta que chegou a ingerir 500 gramas de proteína por dia, e segundo ele vários e vários bodybuilders fazem o mesmo nos dias de hoje.
      E agora o leitor do TP deve pensar nos inúmeros experts no assunto que insistem em que tudo isso é loucura, que o fígado vai explodir, os rins vão se desintegrar, e que você pode virar um zumbi. Bom, o amigo aqui prefere confiar no que alguém do nível do Dorian faz, afinal, basta uma boa olhada nas fotos do cara nas épocas de competição para saber que ele não era de brincadeira.

      A grande questão é saber diferenciar as atividades exercidas pelo atleta, seus objetivos, e claro, as drogas que farão parte do trabalho, e que garantirão que toda essa proteína seja absorvida e metabolizada.
      Dorian dedicou grande parte de seu tempo de competição estudando os melhores usos das proteínas, e claro que já sabia o que todos nós também sabemos hoje: o correto seria de 1 a 2 gramas para cada quilo de peso corporal. O negócio é que o sujeito não estava nem um pouco interessado em fazer parte da maioria, mas se destacar, ser o campeão. A dúvida é se um excesso desse nutriente poderia ser bem absorvido. Yates foi achar essa resposta junto as pesquisas feitas com atletas de levantamento europeus, principalmente os da antiga União Soviética. Dorian viu que eles treinavam três vezes por dia, e em alguns caso até quatro, e não eram raros os treinos que totalizavam seis horas diárias. Peraí, peraí...e o tal do Overtraining? Esse pessoal acreditava que o overtreinamento podia ser evitado com uma alta ingestão de proteínas, indo de 4 a 6 gramas para casa quilo de peso corporal.
      Já de posse desse tipo de informação, Dorian correu atrás de dois especialistas no assunto: Dr. Jim Wright, principal editor de ciências da revista Flex Magazine, e do já nosso conhecido Dr. Mauro Di Pasquale, o grande nome por trás da Dieta Metabólica (o leitor do TP pode achar muito material sobre Di Pasquale em nossos arquivos). Com toda essa bagagem em mãos, Yates já estava com a certeza de que menos do que 3 gramas de proteína, mesmo em épocas de alta restrição calórica nas vésperas de competição, era idiotice. A coisa começava a partir desse número, 3 gramas.
      DIETA DE BODYBUILDING X DIETA NORMAL
      Ainda não satisfeito com as conclusões de sua pesquisa, Dorian resolveu dar uma estudada em dietas de outros tipos de atletas, mas logo percebeu um problema. Em outros esportes, o atleta pode perder algum peso nas vésperas da sua competição, principalmente nos esportes com várias categorias de peso. Mas mesmo assim a diferença não é assim tão grande, sendo quase toda a perda de água. No bodybuilding a coisa é bem diferente, e nesse universo a variação de peso pode ser enorme, entre o que o atleta pesa em off-season e o que vai pesar no pre-contest.
      Depois disso tudo, Dorian já havia chegado a uma conclusão. Usaria 3 gramas de proteína para cada quilo de peso corporal total em seu período de off-season, quando pesava cerca de 136 a 137 Kgs. Isso ia dar mais de 400 gramas diárias no total, que seriam dividas em sete refeições.
      Durante seu reinado como Mr. Olympia, Dorian chegou a subir essa quantidade, indo até 4 gramas para cada quilo de peso, mas constatou que era demais, dificultando mais ainda sua dieta quando entrava na fase de pré-competição (pre contest). Outro detalhe importante é que para subir essa quantidade de proteínas, Yates precisaria retirar carboidratos, que seriam substituídos pela proteína, e isso certamente comprometeria a qualidade dos treinos e sua capacidade de recuperação.
      Um ponto importante para todos os marombeiros interessados em baixar seus percentuais de gordura, sejam competidores ou não, é manter a mesma quantidade de proteínas todo o tempo. Mesmo na fase de dieta, Dorian não alterava essa quantidade de proteína ingerida. Para conseguir o máximo de definição, ele reduzia a quantidade de carboidratos, mantendo cerca de 20% do seu total calórico como gordura. Na medida em que Dorian entrava em pre-contest, e a quantidade de proteína começava a ganhar destaque em termos de percentual, Yates procurava beber mais e mais água, porque já tinha constatado que essa alta quantidade de proteína tinha grande chance de causar desidratação, e alem disso, esse aumento de água é extremamente importante para a manutenção de todo processo anabólico. Nesse período Dorian ingeria de 6 a 7 litros.

      PROTEÍNA SÓLIDA
      Embora todos já saibamos de vários tipos de alimentos que servem como boas fontes de proteína, quando chega a fase da dieta, essas opções de comida, entre os competidores, diminui bastante. Yates usava peito de peru e de frango, carne vermelha magra (músculo ou patinho) e ovos (uma gema para cada quatro claras cozidas). Imediatamente após o treino, Dorian ingeria aproximadamente 25 gramas de proteína em um shake composto Whey Protein e Maltodextrina ou Dextrose.
      A primeira refeição do dia era composta de 12 ovos, sendo três desses com as gemas, mais aveia e iogurte, e aqui já eram 60 gramas de proteínas. Nas outras refeições principais eram mais 80 gramas em cada, e vinham do frango, peru ou carne vermelha
      PROTEÍNA LÍQUIDA
      Com três refeições sólidas, Dorian já conseguia 220 gramas de proteinas, e para chegar nas quase 200 restantes seria preciso o uso de shakes.
      Yates diz que em 1992, quando se preparava para faturar seu primeiro Olympia, teve um grande aprendizado em relação ao uso de suplementos, e que se refletiria na sua condição do ano seguinte, 1993, ano em que o próprio Yates considerou seu melhor ano em termos de qualidade muscular. Logo após a vitória de 1992, Dorian foi convidado para uma sessão de fotos. Estando muito esgotado, ele aumentou a ingestão de carboidratos, mesmo sob o risco de que poderia perder alguma definição. Aproveitou também para mudar de suplemento. Até aquela época, ele apenas usava shakes de proteína isolada, mas havia decidido por fazer uma experiência passando a usar proteína concentrada, caseína e albumina. Após essas duas mudanças, para sua surpresa, ele havia ganho mais volume, e sem perda nenhuma de qualidade.
      Uma possível explicação para isso é que uma dieta alta em proteínas, especialmente quando combinada com baixas quantidades de carboidratos, resulta em um ambiente de alta acidose, o que significa uma alteração no equilíbrio ácido-base do sangue. Esse quadro leva a um balanço negativo de nitrogênio, dificultando a síntese de proteína pelo organismo. Aumentando a quantidade de carbos na dieta, e passando para um tipo de whey de absorção mais lenta, Yates estava conseguindo reverter essa situação. Em relação ao whey isolada, como a absorção é tão rápida, muito dos aminoácidos acabam sendo usados na geração de energia, e com isso novo aumento de acidez no sangue. Fazendo a troca por formas de proteína de absorção lenta, fica bem mais difícil para o nosso organismo aumentar a acidez no sangue.
      A partir de 1993, Yates passaria a ter um cuidado especial com os tipos de proteína que eram usadas em seus shakes. Durante o dia, Dorian passou a usar fontes de proteínas de absorção lenta, combinando whey concentrada com caseína ou albumina. Já no caso da whey isolada, ele passaria a usar três shakes, que eram tomados do seguinte modo primeiro logo antes do treino, o segundo durante, e o terceiro imediatamente no fim do treino. Desse modo, Dorian acreditava cobrir completamente toda e qualquer deficiência de aminoácidos, e com poucas chances de alterar o equilíbrio ácido-base sanguíneo.
      CONCLUSÃO
      Embora os estudos sobre o uso de proteínas na dieta continue a evoluir, nós já temos praticamente toda a informação necessária para saber como e quando usar certos tipos de proteína nas nossas dietas.
      Tenha certeza de que você está ingerindo um mínimo de 2 gramas para cada quilo de peso corporal magro. Estude sobre as diferenças de absorção e de BVs (biological values - valores biológicos) entre os tipos que podem ser usados em seus shakes.
      Seguindo tudo isso corretamente, será possível uma grande mudança em seu corpo em poucas semanas.
    • Por peitodefrango
      Estou fazendo uma avaliação com relação a algumas barras de proteínas. Gostaria de saber qual o opinião de vocês e se deveria ter alguma informação adicional.
      O que acham?
      Próxima avaliação, Exceed Protein Bar.
      Abraços.
    • Por Daniela R Del Giorno
      Chegou 2017. Uns custaram a voltar à rotina treino/dieta, outros nem saíram. Mas, todo praticante sério dos esportes do ferro vive pensando em uma única coisa: superar suas marcas pessoais. Não importa se é 0.50Kg no supino, tracionar um sedã ao invés de um Uno (abração pros praticantes de Strongman! =D) ou aqueles tão sonhados 50cm de bíceps.
      Uma das minhas fontes de inspiração se chama Arnold Schwarzenegger. Sou de uma geração que desprezava esse cara. Montanha de músculos e cérebro de biscoito de polvilho foi o que eu ouvi de pais, professores e formadores de opinião, em geral, todas às vezes em que esboçava algum grau de admiração por este ídolo.
      Durante a adolescência, até comprei esse discurso pseudo-intelectual, pois nesta fase da vida sofremos bastante influência dos pares. Felizmente, veio o amadurecimento e, hoje, questiono como as pessoas podiam considerar burro um cara tão bem-sucedido em áreas completamente distintas como Artes, Política e Administração (inclusive Pública!) – fora outras.
      Sobre Força e Fisiculturismo, várias de suas recomendações de treino são testadas hoje pela ciência e comprovadas como eficazes. Todavia, uma delas, considero de especial interesse - e é sobre ela que vamos falar nesta matéria... Bota mais 10 na barra e me acompanha! ;-D
      Todos os leitores aqui do site já devem saber que o velho Arnie se inspirou em Reg Park para construir seus peitorais. Um dia, não me recordo se foi assistindo ou lendo uma das inúmeras entrevistas em que ele falava sobre o assunto, um detalhe me chamou a atenção: ele mencionou que tinha vários pôsteres do ídolo espalhados pela parede e, ao dormir, fechava os olhos e se imaginava com o peitoral igual ou ainda maior que o de Park.
      Arnold dedicava algum tempo do seu dia meditando em cima de sua meta. Hoje, em ciência do treinamento, falamos sobre meditação, imagética e prática mental como métodos eficazes para a construção de qualidades motoras, o que comprova mais uma vez (se é que precisa!) a perspicácia deste ídolo em conduzir o caminho para seus objetivos.
      A Neurociência do Exercício é uma área relativamente nova, enquanto objeto de estudo, dentro da Educação Física. O que antes era tido como algo etéreo e até meio místico, hoje é apontado como sendo o que diferencia o número 1 do número 10 ou o melhor do esporte na sua cidade de você, praticante dedicado.
      Considere potencial genético, recursos financeiros, ergogênicos, dedicação, amor ao treinamento, tudo igual... Saúde e exercício mentais parecem realmente ser o detalhe a mais rumo ao sucesso. Diversos estudos recentes apontam resultados superiores quando a prática desportiva, seja ela qual for, vem acrescida da prática mental. Tal informação não chega a ser uma novidade, pois praticantes sérios de artes marciais, por exemplo, sempre foram exímios meditadores de seus movimentos. Alguns mestres dedicam horas por semana mentalizando seus katas. Justamente por isso, os primeiros estudos sobre o assunto foram conduzidos com atletas de artes marciais.
      Em 2016, Slimani e Chéour fizeram um estudo objetivando ganhos de força, potência e motivação que envolveu 44 atletas de Karatê, Kickboxing e Taekwondo. Eles foram divididos em 3 grupos, onde todos treinavam alguns exercícios de musculação e pliometria. Um dos grupos fazia um treinamento mental antes dos exercícios, fechando os olhos e se imaginando fazendo o agachamento, por exemplo, sem contrair os músculos.
      Outro grupo fazia o treinamento mental acrescido de uma espécie de verbalização em voz alta de frases motivacionais, tais como “Eu sou capaz de empurrar muito mais que o peso desta barra!” ou “Eu sou muito mais forte do que isso!”.
      Já o terceiro grupo apenas treinava. Todos os grupos melhoraram os parâmetros analisados; porém, o grupo que obteve o melhor resultado foi o grupo que adicionou o treino mental mais a verbalização em voz alta das frases motivacionais.
      O segundo melhor grupo foi o que adicionou apenas o treino mental e o terceiro grupo, que só treinou, até melhorou a força e potência, mas em níveis bem mais modestos.
      Ainda em 2016, Slimani et al continuaram seus estudos, agora somente com kickboxers, e usaram uma metodologia muito similar à anterior para avaliar perfil hormonal, relação testosterona x cortisol pós treino, pressão arterial e frequência cardíaca de repouso ao longo de 12 semanas, a fim de verificar quem obteria melhor recuperação do treino.
      Novamente, o grupo que se destacou foi o que adicionou a prática mental mais as verbalizações antes dos exercícios. Aliás, para quem se interessa em se aprofundar um pouquinho mais na ciência da força, o grupo desse pesquisador é bem prolífero neste tipo de trabalho! Vale muito a pena dar uma conferida em suas publicações!
      Os estudos em Neurociência do Exercício prosseguem, com grupos de pesquisa comparando a eficácia de diversos estímulos mentais, traçando perfis psíquicos de atletas de alto rendimento, comparando esses perfis com atletas amadores e muitos outros trabalhos! Mas, de uma coisa já temos certeza: quer ficar maior e mais forte? Faça como mestre Arnold: imagine-se maior e mais forte e bota mais dez!  ;-D
      P.S.: Gosta dos artigos? Não? Dúvidas? Podem escrever! Gostaria de ouvir vocês... Comente a matéria ou mande mensagem privada (MP):
      Enviar mensagem para Daniela R Del Giorno
      Referências:
      ANTONIO, A.; REVECA, F.; RAMOS-LOYO, J. Exploring the Effect of Verbal Emotional Words Through Event-Related Brain Potentials. In: Functional Brain Mapping and the Endeavor to Understand the Working Brain. [s.l.] InTech, 2013. 
      GOLBY, J.; WOOD, P. The Effects of Psychological Skills Training on Mental Toughness and Psychological Well-Being of Student-Athletes. Psychology, v. 7, n. 7, p. 901–913, 2009. Disponível em: <http://www.scirp.org/journal/psych>. Acesso em: 19 fev. 2017.
      JOURNAL, T.; ASPETAR, L. T.; ME, S.; ASPETAR, K. C.; ME, S.; BIOLOGY, A. Effects of mental training on muscular force , hormonal and physiological changes in kickboxers. n. July, 2016. 
      SLIMANI, M.; CHÉOUR, F. Effects of cognitive training strategies on muscular force and psychological skills in healthy striking combat sports practitioners. Sport Sciences for Health, v. 12, n. 2, p. 141–149, 2016. 
      SLIMANI, M.; MIARKA, B.; BRIKI, W.; CHEOUR, F. Comparison of Mental Toughness and Power Test Performances in High-Level Kickboxers by Competitive Success. Asian J Sports Med, v. 7, n. 2, 2016. 
      WRIGHT, C. J.; SMITH, D. The effect of PETTLEP imagery on strength performance. International Journal of Sport & Exercise Psychology, v. 7, n. June 2013, p. 18–31, 2009. 
×
×
  • Criar novo...